CSE 141:
Computer Architecture
Professor: Michael Taylor

UCSD Department of Computer Science & Engineering
Computer Architecture from 10,000 feet

foo(int x)
{
 ..
}

Class of application

Physics
“In 1942, just after the United States entered World War II, hundreds of women were employed around the country as computers...” (source: IEEE)
The Great Battles in Computer Architecture Are About How to Refine the Abstraction Layers

foo(int x) { .. }

Computation

Language
Compiler
ISA
Micro Architecture
Register-Transfer Level
Circuits
Devices
Materials Science

Fortran
IBM 360, VLIW
RISC, T’meta
Superscalar, caches

Mead & Conway

Physics
Abstractions protect us from change -- but must also change as the world changes.

Computation

Language
Compiler
ISA
Micro Architecture
Register-Transfer Level
Circuits
Devices
Materials Science

Changes in fabrication capabilities

- Slower Wires!
- Denser VLSI gates!
- More pins!
- More Power/cm²!
Abstraction Layers - reflected in organization of research communities

Computation

Language
Compiler
ISA
Micro Architecture
Reg-Transfer Level
Circuits
Devices
Materials Science

Physics

International Symposium on Computer Architecture (ISCA)
High Performance Computer Architecture (HPCA)
Architectural Support for Programming Languages and OS (ASPLOS)
International Symposium on Microarchitecture (MICRO)
Design Automation Conference (DAC)
Int. Conf. Computer Aided Design (ICCAD)
International Solid State Circuit Conference (ISSCC)
International Electron Devices Meeting (IEDM)
Classic ISSCC (Circuits) Paper: “How we designed a chip and how fast / low power it is.”
Classic Int. Electron Device Meeting (IEDM) Paper: How we designed a single transistor

90 nm Generation Transistor

- Nickel Silicide Layer
- Silicon Gate Electrode
- 1.2 nm SiO₂ Gate Oxide
- Strained Silicon

No other company combines these transistor features at the 90 nm generation.

Figure 11: 1.2 nm gate oxide time to fail vs. electric field.

Figure 6: NMOS I_{ON} vs. I_{OFF} at 1.0V and 1.2V.
90 nm Generation Interconnects

Low-k CDO Dielectric

Copper Interconnects

Combination of copper + low-k dielectric now meeting performance and manufacturing goals

Intel
The focus of this class

- Language
- Compiler
- ISA
- Micro Architecture
- Reg-Transfer Level
- Circuits
- Devices
- Materials Science

International Symposium on Computer Architecture (ISCA)
High Performance Computer Architecture (HPCA)
Architectural Support for Programming Languages and OS (ASPLOS)
International Symposium on Microarchitecture (MICRO)
Design Automation Conference (DAC)
Int. Conf. Computer Aided Design (ICCAD)
International Solid State Circuit Conference (ISSCC)
International Electron Devices Meeting (IEDM)
Tech Trends

Since technology change is such a big influence in architecture, and because it takes 3-6 years to create a totally new design, we try to predict & exploit it (with varying degrees of success.)
Moore's Law: 2X transistors / “year”

“Cramming More Components onto Integrated Circuits”
- Gordon Moore, Electronics, 1965

on transistors / cost-effective integrated circuit double every N months (12 ≤ N ≤ 24)

Adapted from Patterson, CSE 252 Sp06 Lecture 2 © 2006 UC Berkeley.
One Important Change: Power
Santa Clara, we have a problem

More pipeline stages, less efficient, more power.

Just can’t remove > 100 watts without great expense on a desktop.

All computing is now **Low Power Computing**!
Power Density

Power doubles every 4 years
5-year projection: 200W total, 125 W/cm²!

Change: microprocessor frequency versus time

- 7 yr / 10x (39%)
- 5 yr / 10x (58%)

Faster Circuits, Faster + Smaller Transistors, Fast Microarchitecture

Power Limited

Intel x86
Intel

P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
Intel

P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
Intel

P3: 12 stages
P4 (b4 paper): 20 stages
P4/prescott: 31 stages
P5/Tejas: >> 31 stages
Back to the future

P3:
- 12 stages

P4 (b4 paper):
- × 20 stages

P4/prescott:
- × 31 stages

P5/Tejas:
- ×× 31 stages

Same as 1996 – I can’t sell that.
I must call it something new ---
Pentium...Mmmm... Great Scott,
I’ve got it!
And forward to multi-core

Intel Core Duo
Future outlook

Old Trend: Frequency

New Trend: Parallel processing
→ Intel is pushing multi-core instead of higher clocks (will we ever hit 10 GHz?)
→ good time to know something about architecture
→ your application may be feasible only if you can use the architecture efficiently
Abstractions protect us from change -- but must also change as the world changes.

Changes in application space

Language
Compiler
ISA
Micro Architecture
Register-Transfer Level
Circuits
Devices
Materials Science

Physics

Virtual Homicide (Quake)
Photographic memory
Telepathic
Mathematical Genius
Etc...
And on that note: PC’s are not the only important class of computer - in fact they are in the minority (~2%)!
Administrative Details

Course Work and Grading

- Let's Review the Course Website ...
Patterson & Hennessy, fourth edition of “Computer Organization, the Hardware/Software Interface”

- Decent book. We’ll read most of it.
 - 4rd Edition, came out this year, look for errata
- Patterson is professor at Berkeley;
 - lead RISC project (foundation of SPARC processor)
 - lead RAID (redundant array of inexpensive disks) project
- Hennessy is professor at Stanford
 - now President of Stanford
 - co-founded of MIPS Computer Systems
- Note: same authors wrote the graduate textbook, “Computer Architecture, A Quantitative Approach”.
Text vs. Lectures in CSE 141

Assigned readings for each lecture posted on website!

- Lectures will include material not in the text...text will include material not in the lectures.

- Resource limitations prevent us from addressing material from the prerequisites in office hours...but we are happy to refer you to the book or your classmates.
How to find out your deliverables

• Check the website. Generally, we won’t necessarily announce readings or assignment due dates in lecture.

http://www-cse.ucsd.edu/classes/sp10/cse141/

• You will have assigned reading for every lecture except when you have an exam.

Please watch the website for course updates, reading assignments and homework assignments!
Course Staff

Instructor: Michael Taylor

Lectures: Tu/Th

TA: Matt Devuyyst

Discussion sec: Wed
Question Triage:
Who to ask which Question

Me:
 “In lecture, ...”
 “I’m designing my own supercomputer, and...”

Matt:
 “On problem 5, ...”

Arash:
 “In the Altera environment, ... “

Me+Matt:
 “In a 2-way set associative cache...”
 “In the book, ...“

Me+Arash:
 “In my 141L Implementation, ...“

.. and of course, talk with your classmates!!
Am I Qualified to Teach You?

- PhD, MIT, EE & CS
 - ten years at MIT studying processor design
 - 2 years consulting for chip companies
 - various research publications

Architectures designed: 4
Machines Implemented: 3
Millions of units of software shipped: > 1
Million-gate chips designed: 1
Supercomputers designed: 1
About Me

PowerMush 3
PowerMush IV
About Me

~120 million transistors