Review

- d-separation

When is \[\begin{cases} P(Y \mid E, X) = P(Y \mid E) \\ P(X \mid E, Y) = P(X \mid E) \\ P(X, Y \mid E) = P(X \mid E)P(Y \mid E) \end{cases} \]?

True if all paths from X to Y are "blocked."

A path is blocked if it has a node Z that satisfies 1, 2, or 3:

1) \(Z \notin E \rightarrow Z \rightarrow \) intervening cause

2) \(Z \in E \leftarrow Z \rightarrow \) common cause

3) \(Z \notin E \rightarrow Y \leftarrow \text{desc}(Z) \notin E \) no observed common effect

- Markov blanket \(B_x \) of node X
Jconsists of parents, children, spouses of X.

Thm: \(P(X \mid B_x, Y) = P(X \mid B_x) \)

where \(Y \notin \{X, B_x\} \)

Proof:

For any \(Y \notin \{B_x, X\} \), the undirected path from Y to X must pass thru \(B_x \).

There are 5 cases of paths to consider:

1) from parent of parent \(P \) of node X
 blocked by \(P \) (I d-sep)

2) from child of parent \(P \)
 blocked by \(P \) (II)

3) from parent of spouse \(S \)
 blocked by \(S \) (III)

4) from child of spouse \(S \)
 blocked by \(S \) (IV)

5) from child of child \(C \)
 blocked by \(C \) (V)

All paths are blocked from Y to X:
\[\Rightarrow P(X \mid Y \mid B_x) = P(X \mid B_x)P(Y \mid B_x) \]
Inference

• Problem
 \(E = \) set of evidence nodes
 \(Q = \) set of query nodes
 How to compute posterior probs \(P(Q|E) \)?

• Types of inference

 - diagnostic reasoning
 (from effects to causes)
 Ex: \(P(B=1|M=1) \)
 - causal reasoning
 (from causes to effects)
 Ex: \(P(M=1|B=1) \)
 - inter-causal reasoning
 (explaining away)
 Ex: \(P(B=1|A=1,E=1) \)

Q: When can we perform inference efficiently?
 (Polynomial time in size of DAG and CPTs)

A: Poly-trees

Def: poly-tree = singly connected networks at most one undirected path between any two nodes; no loops.

• Goal: compute \(P(X|E) \)

 boxes don't overlap:
 no loops in poly-trees!
Types of evidence

- E^+_x: evidence above X, connected thru parents
- E^-_x: evidence below X, connected thru children

$E = E^+_x \cup E^-_x$

Assume $X \notin E$; otherwise inference is trivial

"causal" reasoning from upstream evidence (only)

How to compute $P(X \mid E^+_x)$?

General strategy: recursion.

Upstream recursion

$$P(X \mid E^+_x) = \sum_{\tilde{u}} P(X, \tilde{u} = \tilde{u} \mid E^+_x) \text{ marginalization over parents}$$

$$= \sum_{\tilde{u}} P(X \mid \tilde{u} = \tilde{u}, E^+_x) P(\tilde{u} = \tilde{u} \mid E^+_x) \text{ conditionalized product rule}$$

$$= \sum_{\tilde{u}} P(X \mid \tilde{u} = \tilde{u}) P(\tilde{u} = \tilde{u} \mid E^+_x) \text{ d-separation case I or II}$$

$$= \sum_{\tilde{u}} P(X \mid \tilde{u} = \tilde{u}) \prod_{i=1}^{m} P(U_i = u_i \mid E^+_x) \text{ d-separation, case III (X is unobserved common effect)}$$

Let $E_{U_i \setminus X}$ = evidence connected to U_i except via path through X

$E_{U_i \setminus X}$ (in i^{th} parent's box)

$$P(X \mid E^+_x) = \sum_{\tilde{u}} P(X \mid \tilde{u} = \tilde{u}) \prod_{i=1}^{m} P(U_i = u_i \mid E_{U_i \setminus X}) \text{ d-separation case III (X is unobserved common effect)}$$

$P(X \mid E^+_x)$ solve by recursing on parents
Reasoning from downstream evidence

How to compute $P(E \perp X | X)$?

It is possible (but complicated) to derive a downstream recursion.

General case: reasoning from $E = E^+_x \cup E^+_x$

$$P(X | E) = P(X | E^+_x, E^+_x) = \frac{P(X, E^+_x | E^+_x)}{P(E^+_x | E^+_x)} \text{ conditionalized product rule}$$

$$= \frac{P(X, E^+_x | E^+_x)}{\sum_x P(X=x, E^-_x | E^+_x)} \quad \text{marginalization: denominator is same computation as numerator, summed over different values of } x.$$

Focus on numerator:

$$P(X, E^+_x | E^+_x) = P(E^+_x | X, E^+_x) P(X | E^+_x) \text{ product rule}$$

$$= P(E^+_x | X) P(X | E^+_x) \text{ d-sep (I) }$$

$$= \text{downstream recursion} \quad \text{upstream recursion}$$

Termination conditions

- root node (no parents)
- leaf node (no children)
- evidence node (trivial)

Running time

linear in # nodes

size of CPTs remember $\{ \sum_u P(X | U=u) \} \ldots$
Loopy BNs

Ex: medical diagnosis
 2-layer network

Ex: simpler example

How to do exact inference?

Turn a loopy BN into a poly-tree.

Ex: node clustering

Merge nodes to form poly-tree

Merge s_1, s_2, s_3 into mega-node S.

Merge CPTs $P(s_1 | D), P(s_2 | D), P(s_3 | D)$ into $P(S | D)$.

Apply poly-tree algorithm.

size of mega-node = 2^3
size of mega-CPT = 2^4

Poly-tree algorithm linear in CPT size,
but CPT size grows exponentially with clustering.

How to choose optimal clustering?
computationally hard problem.