Review

- Probabilities
 - Unconditional: \(P(X) \)
 - Conditional: \(P(X|Y) \)
 - Joint: \(P(X,Y) \)
- Conditional independence
 \[
 \begin{align*}
 P(X|Y) &= P(X) \\
 P(Y|X) &= P(Y) \\
 P(X,Y) &= P(X)P(Y)
 \end{align*}
 \]
 equivalent

- Rules
 \[
 P(A,B,C,...) = P(A)P(B|A)P(C|A,B) \text{ (product rule)}
 \]

- Bayes' rule
 \[
 P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}
 \]

- Marginalization
 \[
 P(X) = \sum_{Y}P(X,Y=y)
 \]

Probabilistic inference

Do probabilities capture patterns of commonsense reasoning?

Today — reasoning about:

1) multiple explanations of a single event
2) multiple events with a single explanation
3) intervening events
Binary random variables

B = burglary
E = earthquake
A = alarm

Joint distribution

\[P(B, E, A) = P(B) \ P(E|B) \ P(A|B, E) \]

Domain knowledge

\[P(B=1) = 0.001 \]
\[P(E=1|B=0) = 0.002 \]
\[P(E=1|B=1) = 0.002 \]
\[P(E=1|B)= P(E=1) = 0.002 \]

<table>
<thead>
<tr>
<th></th>
<th>E = 0</th>
<th>E = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = 0</td>
<td>0</td>
<td>0.001</td>
</tr>
<tr>
<td>B = 1</td>
<td>0.29</td>
<td>0.94</td>
</tr>
<tr>
<td>B = 1</td>
<td>0.95</td>
<td></td>
</tr>
</tbody>
</table>

1. Reasoning about multiple explanations

\[P(B=1|A=1) = ? \]

\[P(B=1|A=1, E=1) = ? \]

\[P(B=1|A=1, E=1) \rightarrow 0.387 \]

\[P(B=1|A=1) \rightarrow 0.0033 \]

Bayes' rule:

\[P(B=1|A=1) = \frac{P(A=1|B=1) \ P(B=1)}{P(A=1)} \]

\[P(A=1) = \sum \ P(A=1, E=e, B=b) = \sum \ P(B=b) \ P(E=e|B=b) \ P(A=1|B=b, E=e) \]

Term in numerator

\[= P(B=0) \ P(E=0) \ P(A=1|B=0, E=0) + \]
\[P(B=0) \ P(E=1) \ P(A=1|B=0, E=1) + \]
\[P(B=1) \ P(E=0) \ P(A=1|B=1, E=0) + \]
\[P(B=1) \ P(E=1) \ P(A=1|B=1, E=1) \]

\[= (1-0.001) \ (1-0.002) \ (0.001) + \]
\[(1-0.001) \ (0.002) \ (0.29) + \]
\[(0.001) \ (1-0.002) \ (0.94) + \]
\[(0.001) \ (0.002) \ (0.95) = 0.00252 \]
Term in numerator:

\[P(A=1 \mid B=1) = \sum_{e \in \{0,1\}} P(A=1, E=e \mid B=1) \]

\[= \sum_{e} P(A=1 \mid E=e, B=1) P(E=e \mid B=1) \]

\[= P(A=1 \mid E=0, B=1) P(E=0) \]

\[+ P(A=1 \mid E=1, B=1) P(E=1) \]

\[= (0.94) (1-0.002) + (0.95) (0.002) \]

\[= 0.94002 \]

So...

\[P(B=1 \mid A=1) = \frac{P(A=1 \mid B=1) P(B=1)}{P(A=1)} = \frac{(0.94002)(0.001)}{(0.00252)} = 0.37 \]

Conditionalized form of Bayes rule:

\[P(B=1 \mid A=1, E=1) = \frac{P(A=1 \mid B=1, E=1) P(B=1 \mid E=1)}{P(A=1 \mid E=1)} \]

\[= \frac{(0.94002)(0.001)}{(0.00252)} = 0.0033 \]

Numerator:

\[P(B=1 \mid E=1) = P(B=1) = 0.001 \]

Denominator:

\[P(A=1 \mid E=1) = \sum_{b} P(A=1, B=b \mid E=1) \]

\[= \sum_{b \in \{0,1\}} P(A=1 \mid B=b, E=1) P(B=b \mid E=1) \]

\[= P(A=1 \mid B=0, E=1) P(B=0) + P(A=1 \mid B=1, E=1) P(B=1) \]

\[= (0.29)(1-0.001) + (0.95)(0.001) \]

\[= 0.29 \]

Summary:

\[P(B=1) = 0.001 \]

\[P(B=1 \mid A=1) = 0.37 \]

\[P(B=1 \mid A=1, E=1) = 0.0033 \]

\[\Rightarrow \text{Earthquake "explains away" the alarm, weakening our belief in the burglary.} \]
"Explaining away" is an example of non-monotonic reasoning.

\[P(B=1) < P(B=1 \mid A=1) \]
\[P(B=1 \mid A=1) > P(B=1 \mid A=1, E=1) \]

Arises from multiple (causal) explanations of an observed event.

2) Multiple events with a common explanation

 More random variables
 - \(J = \text{John calls} \)
 - \(M = \text{Mary calls} \)

 Conditional independence assumptions

 Already: \(P(B \mid E) = P(B) \)

 Also: \(P(J \mid A) = P(J \mid A, B, E) \)
 \(P(M \mid A) = P(M \mid A, J, B, E) \)

 Joint distribution

 \[P(B, E, A, J, M) = P(B) P(E \mid B) P(A \mid B, E) P(J \mid B, E, A) P(M \mid B, E, A, J) \]

 \[= P(B) \underbrace{P(E) P(A \mid B) P(J \mid A)}_{\text{conditional independence assumptions}} P(M \mid A) \]

 Conditional probabilities

 \(P(J=1 \mid A=0) = 0.05 \)
 \(P(J=1 \mid A=1) = 0.9 \)
 \(P(M=1 \mid A=0) = 0.01 \)
 \(P(M=1 \mid A=1) = 0.7 \)

 Compare \(P(A=1) = 0.00252 \)
 \(P(A=1 \mid J=1) = ? \rightarrow 0.0435 \) \(\uparrow \) non-monotonic
 \(P(A=1 \mid J=1, M=0) = ? \rightarrow 0.0136 \) \(\downarrow \)
Bayes rule:

\[P(A=1 | J=1) = \frac{P(J=1 | A=1) P(A=1)}{P(J=1)} = 0.435 \]

Denominator:

\[P(J=1) = \sum_a P(A=a, J=1) \text{ marginalization} \]

\[= \sum_a P(J=1 | A=a) P(A=a) \text{ product rule} \]

\[= P(J=1 | A=0) P(A=0) + P(J=1 | A=1) P(A=1) \]

\[= (0.05) (1 - 0.00252) + (0.9) (0.00252) \]

\[= 0.0521 \]

Bayes rules (with multiple pieces of evidence)

\[P(A=1 | J=1, M=0) = \frac{P(J=1, M=0 | A=1) P(A=1)}{P(J=1, M=0)} \]

\[= \frac{P(J=1 | A=1) P(M=0 | A=1) P(A=1)}{P(J=1, M=0)} \]

\[= 0.0136 \]

Denominator:

\[P(J=1, M=0) = \sum_a P(...) \]

\[= 0.05 \]

3) Reasoning about intervening events

Compare:

\[P(A=1) = 0.00252 \]

\[P(A=1 | J=1) = 0.435 \]

\[P(A=1 | J=1, B=1) = P(J=1 | A=1, B=1) P(A=1 | B=1) \]

\[= 0.9965 \]

Conditionalized Bayes rule:

\[P(J=1 | B=1) \]

\[= 0.849 \]

Conditional marginalization