Motivation

- Modeling uncertainty
 1) inherent randomness in world
 2) gross statistical description of complex deterministic world
 3) guardian of commonsense reasoning

Review of probability

- Discrete random variables \(X \) (capitalized)
 Domain of possible values \(\{X_1, X_2, \ldots, X_n\} \) (lower case)

Ex: month \(M \), \(\{M_1=\text{JAN}, M_2=\text{FEB}, \ldots, M_{12}=\text{DEC}\} \)

- "Unconditional" or "prior" probability: \(P(X=x) \)
 Basic axioms:
 (i) \(P(X=x) \geq 0 \) "probability the event \(X=x \) is true"
 (ii) \(\sum_{i=1}^{n} P(X=x_i) = 1 \)
 (iii) \(P(X=x_i \text{ or } X=x_j) = P(X=x_i) + P(X=x_j) \text{ if } x_i \neq x_j \)
 Probs add for union of mutually exclusive events.

- "Conditional" or "posterior" probability
 \(P(X=x_i | Y=y_j) \) = probability that \(X=x_i \) given that \(Y=y_j \)

In general: \(P(X=x_i | Y=y_j) \neq P(X_i) \)

Ex: conditional dependence
 weather \(W \) \(\{w_1=\text{sunny}, w_2=\text{rainy}\} \)
 \(P(W=\text{sunny}) = 0.9 \)
 \(P(W=\text{sunny} | M=\text{jan}) = 0.7 \) depending on condition, probability
 \(P(W=\text{sunny} | M=\text{aug}) = 0.95 \)
 Can change either way...

Ex: conditional independence
 day of week \(D \) \(\{d_1=\text{mon}, \ldots, d_7=\text{sun}\} \)
 \(P(W=\text{rain} | D=\text{tues}) = P(W=\text{rain}) \)

Also true:
(i) \(P(X=x_i | Y=y_j) \geq 0 \)
(ii) \(\sum_{i} P(X=x_i | Y=y_j) = 1 \) Note: sum over \(i \), not \(j \)
• Joint probability
 \(P(X=x_i, Y=y_j) = \text{prob. that } X=x_i \text{ and } Y=y_j \)

• Product rule: from conditional to joint
 For all \(i, j \):
 \(P(X=x_i, Y=y_j) = P(X=x_i \mid Y=y_j) P(Y=y_j) \)
 Also:
 \(P(X=x_i, Y=y_j) = P(Y=y_j \mid X=x_i) P(X=x_i) \)

• Generalized product rule: create composite event from simpler events
 \(P(A=a_i, B=b_j, C=c_k, D=d_l, \ldots) \)
 \(= P(A=a_i) P(B=b_j \mid A=a_i) P(C=c_k \mid A=a_i, B=b_j) P(D=d_l \mid A=a_i, B=b_j, C=c_k) \)

• Easier to assess conditional probabilities (RHS) than joint probs (LHS)
 Ex: \(A = \text{wake up on time} \)
 \(B = \text{eat breakfast} \)
 \(C = \text{hit traffic} \)
 \(D = \text{arrive on time UCSD} \)

• Marginalization: from joint to marginal distribution
 \(P(X=x_i) = \sum_j P(X=x_i, Y=y_j) \)
 \(P(X=x_i, Y=y_j) = \sum_k P(X=x_i, Y=y_j, Z=z_k) \)
 In this context, probabilities on LHS (over smaller subsets of random variables) are known as \textit{marginal} probabilities.

• Shorthand notation
 (i) implied universality: \(P(X,Y) = P(X \mid Y) P(Y) = P(Y \mid X) P(X) \)
 implied that equality holds for all \(X=x_i \) and \(Y=y_j \)
 (ii) implied assignment: \(P(x, y, z) = P(X=x, Y=y, Z=z) \)
 ok to omit assignment when context is unambiguous
 Ex: generalized product rule
 \(P(a, b, c, d, \ldots) = P(a) P(b \mid a) P(c \mid a, b) \ldots \)
Bayes rule relates conditional probs to other conditional probs.

From "inplied unversity equation,
\[P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)} \]
"if you see the effect, you can infer the cause."

Intuitively, if \(X \) is a "cause" and \(Y \) is an "effect," we can use Bayes rule to infer \(X \) from \(Y \).

Ex: cancer diagnosis

Given: 1% population has cancer
Test has 10% false negative rate.
Test has 20% false positive rate.

• You test positive. Do you have cancer?

• Random variables
 DIAGNOSIS \(\in \{ \text{cancer, healthy}\} \)
 TEST \(\in \{ \text{pos, neg}\} \)

• Probabilities:
 \[P(\text{cancer}) = 0.01 \]
 \[P(\text{pos} \mid \text{cancer}) = 0.9 \]
 \[P(\text{pos} \mid \text{healthy}) = 0.2 \]

• Marginalization
 \[P(\text{pos}) = \sum_{\text{DIAGNOSIS}} P(\text{pos}, \text{DIAGNOSIS}) = \sum_{\text{DIAGNOSIS}} P(\text{pos} \mid \text{DIAGNOSIS})P(\text{DIAGNOSIS}) \]
 \[= P(\text{pos} \mid \text{cancer})P(\text{cancer}) + P(\text{pos} \mid \text{healthy})P(\text{healthy}) \]
 \[= (0.9)(0.01) + (0.2)(1 - 0.01) = 0.207 \]

• Bayes rule
 \[P(\text{cancer} \mid \text{pos}) = \frac{P(\text{pos} \mid \text{cancer})P(\text{cancer})}{P(\text{pos})} = \frac{(0.9)(0.01)}{0.207} \]
 \[= 0.043 = \frac{4.3\%}{\text{Before test}} \]
 \[= 0.01 \text{ or 1%} \]
 \[= P(\text{cancer} \mid \text{pos}) = 4.3\% \]
 \[= P(\text{cancer} \mid \text{pos}) \ll P(\text{pos} \mid \text{cancer}) = 90\% \]

All terms in Bayes rule are important.
Conditioning on background evidence often useful to reason in context of background knowledge. Consider events X and Y and background evidence E.

(i) conditionalized version of product rule

$$P(X, Y | E) = \frac{P(X, Y, E)}{P(E)} = \frac{P(X, Y, E)}{P(Y, E)} \cdot \frac{P(Y, E)}{P(E)} = \frac{P(X | Y, E)}{P(Y | E)} \cdot \frac{P(Y | E)}{P(E)}$$

"this is useful"

Also: $$P(X, Y | E) = P(Y | X, E) \cdot P(X | E)$$

(ii) conditionalized version of Bayes rule

From above: $$P(X | Y, E) \cdot P(Y | E) = P(Y | X, E) \cdot P(X | E)$$

$$\Rightarrow P(X | Y, E) = \frac{P(Y | X, E) \cdot P(X | E)}{P(Y | E)}$$

• Conditional independence statements

 The following three statements are equivalent:

 (i) $$P(X, Y | Z) = P(X | Z) \cdot P(Y | Z)$$

 (ii) $$P(X | Y, Z) = P(X | Z)$$

 (iii) $$P(Y | X, Z) = P(Y | Z)$$

 Proof: HW

 If any one is true, the other two are true.
Kullback–Leibler divergence (KL)

How to measure the difference between two probability distributions?

Let:
\[p_i = P(X=x_i | E) \]
\[q_i = P(X=x_i | E') \]

Conditioned on different evidence \(E \neq E' \)

Define:
\[KL(p, q) = \sum_i p_i \log \left(\frac{p_i}{q_i} \right) \]

Properties of KL "distance" (not really a distance since it isn't symmetric)

(i) \(KL(p, q) \geq 0 \) with equality if \(p_i = q_i \) for all \(i \)
(ii) \(KL(p, q) \neq KL(q, p) \) in general