You will design and implement a microprocessor this quarter!
Course Goals

• Apply what you learned in 141
• See architecture play itself out in a real design
• Learn (more) Verilog
• Get experience working on a large-scale project
• Have Fun!

• “I hear, I forget. I see, I remember. I do, I understand.”
Course Format

• Six labs
 • More about these in a moment.

• Lectures
 • Verilog coding
 • Discuss current or upcoming lab
 • Work through part of the lab
 • Answer questions about the lab
 • Sort of like group office hours
Lab 1: Introduction Xilinx ISE

- 1 week
- Two Xilinx tutorials
 - Building projects
 - Entering verilog
 - Simulation
 - etc.
- Build, simulate, and synthesize simple circuits
- Measure their properties
- These are skills you will need throughout the class
- Start now!
Lab 2: Simple Datapath

- 1 week
- Implement the datapath for a brain-dead processor
 - 16 bit instruction, 8 bit data
 - 9 instructions: Add, Sub, Mult, Ld, St, Li, Read, Write, Halt
Lab 3: Simple Control

• 1 week.
• Add control the datapath in Lab 2
• Execute simple programs

• You will now have all the pieces you need to build a processor.
Lab 4: Your own datapath

• 2 weeks
• Use an ISA from cse141
• Design and the implement the datapath needed to execute the instructions.
• Design review with another team.
Lab 5: Control for your processor

- 2 weeks
- Implement the control path for your processor
- You will now have a working CPU! Hurrah!
- Evaluate the performance of your CPU with some simple benchmarks.
Lab 6: Make your CPU Cooler

- 2-3 weeks
- The sky is the limit
 - Pipelining
 - Build a multiprocessor
 - Branch prediction
 - Speculation
 - Multi-media instructions
 - ???
You do not need to be in 141 to take 141L
We will use the results of the 141 project in this class
- 141 Project: Design a 17-bit instruction, 34-bit data ISA
- Due just before the start of Lab 3.
If you are not in 141, you will “license” an ISA from one of the groups in 141
- License is free to you. The licenser gets extra credit.
Doing the work

- Lab 1 will be done independently
- Lab 2-6 will be in groups of 2-3
 - Higher standards for groups of 3
 - Regrouping is allowed for labs 4-6
 - Choose your groups carefully
 - If your group breaks up at any time after lab 4 begins, you are stuck.
- The overarching philosophy is “learn by doing”
 - You (and your group) must do all your own coding and design.
 - You should absolutely talk to other students in the class about Xilinx problems, design options, etc.
 - Labs 1-3 are specifically for this: you are all building the same thing. Learn from each other!
Lab space and Software

- We will use the Xilinx tools for development
 - Verilog entry
 - Simulation
 - Debugging facilities
 - Like all hardware design tools, there are bugs.
 - These are among the best tools available, hard as that may be to believe.
- The labs in the CSE basement have the tools installed
- They are also available for free (see link on the website)
Course Staff

- Prof: Steven Swanson
- TA: Matt DeVuyst
- TA: Ameen Akel

- One of us will be in the lab 3 nights per week.
- We hate to be lonely!
- We will fix the room and time shortly. For now, use B230

- See [course web site](#) for details.
Grading

- Two grading schemes
- By the numbers
 - Six labs + class participation
 - ~Equal weight on each (14% per lab, 16% participation)
- Outcome-based
 - Do a reasonable job on the labs
 - Deliver a working processor.
 - You get an A.