Memories and SRAM
Silicon Memories

• Why store things in silicon?
 • It’s fast!!!
 • Compatible with logic devices (mostly)
• The main goal is to be cheap
 • Dense -- The smaller the bits, the less area you need, and the more bits you can fit on a chip/wafer/through your fab.
 • Bit sizes are measured in F^2 -- the smallest feature you can create.
 • F^2 is a function of the memory technology, not the manufacturing technology.
Questions

• What physical quantity should represent the bit?
 • Voltage/charge -- SRAMs, DRAMs, Flash memories
 • Magnetic orientation -- MRAMs (more later)
 • Crystal structure -- phase change memories (more later)
 • The orientation of organic molecules -- various exotic technologies
 • All that’s required is that we can sense it and turn it into a logic one or zero.

• How do we achieve maximum density?
• How do we make them fast?
Anatomy of a Memory

- Dense: Build a big array
 - bigger the better
 - less other stuff
 - Bigger -> slower
- Row decoder
 - Select the row by raising a “word line”
- Column decoder
 - Select a slice of the row
- Decoders are pretty big.
The Storage Array

- Density is king.
 - Highly engineered, carefully tuned, automatically generated.
 - The smaller the devices, the better.
- Making them big makes them slow.
 - Bit/word lines are long (millimeters)
 - They have large capacitance, so their RC delay is long
 - For the row decoder, use large transistors to drive them hard.
 - (it’s ok, there are many of those big transistors)
 - For the bit cells...
 - There are lots of these, so making them big is a no good.
Sense Amps

• Sense amplifiers take a difference between two signals and amplify it

• Two scenarios
 • Inputs are initially equal (“precharged”) -- they each move in opposite directions
 • One input is a reference -- so only one signal moves

• Frequently used in memories
 • Sense amps can detect small analog signals from the storage cell, and convert it into a logic one or logic zero.
Static Random Access Memory (SRAM)

- **Storage**
 - Voltage on a pair of cross-coupled inverters
 - Durable in presence of power
- **To read**
 - Pre-charge two bit lines to Vcc/2
 - Turn on the “word line”
 - Read the output of the sense-amp
Static Random Access Memory (SRAM)

- **Storage**
 - Voltage on a pair of cross-coupled inverters
 - Durable in presence of power

- **To read**
 - Pre-charge two bit lines to Vcc/2
 - Turn on the “word line”
 - Read the output of the sense-amp
Static Random Access Memory (SRAM)

- **Storage**
 - Voltage on a pair of cross-coupled inverters
 - Durable in presence of power

- **To read**
 - Pre-charge two bit lines to Vcc/2
 - Turn on the “word line”
 - Read the output of the sense-amp
Static Random Access Memory (SRAM)

• **Storage**
 - Voltage on a pair of cross-coupled inverters
 - Durable in presence of power

• **To read**
 - Pre-charge two bit lines to Vcc/2
 - Turn on the “word line”
 - Read the output of the sense-amp
Static Random Access Memory (SRAM)

- **Storage**
 - Voltage on a pair of cross-coupled inverters
 - Durable in presence of power
- **To read**
 - Pre-charge two bit lines to Vcc/2
 - Turn on the “word line”
 - Read the output of the sense-amp
SRAM Writes

- To write
 - Turn off the sense-amp
 - Turn on the wordline
 - Drive the bitlines to the correct state
 - Turn off the wordline
SRAM Writes

- To write
 - Turn off the sense-amp
 - Turn on the wordline
 - Drive the bitlines to the correct state
 - Turn off the wordline
SRAM Writes

• To write
 • Turn off the sense-amp
 • Turn on the wordline
 • Drive the bitlines to the correct state
 • Turn off the wordline
To write:

- Turn off the sense-amp
- Turn on the wordline
- Drive the bitlines to the correct state
- Turn off the wordline
SRAM Writes

- To write
 - Turn off the sense-amp
 - Turn on the wordline
 - Drive the bitlines to the correct state
 - Turn off the wordline
Building SRAM

- This is "6T SRAM"
- 6 "basic devices" is pretty big
- SRAMs are not dense
SRAM Density

- At 65nm: 0.52um²
- 123-140 F²
- 1 F² is one “square feature”
- [ITRS 2008]

65nm TSMC 6T SRAM
SRAM Ports

- Add word and bit lines
- Read/write multiple things at once
- Density decreases quadratically
- Bandwidth increase linearly
SRAM Performance

- Read and write times
 - 10s-100s of ps
- Bandwidth
 - Registers -- 324GB/s
 - L1 cache -- 128GB/s
 - Samsung K7D323674C -- 3.6GB/s
- Durability
 - Infinite (not quite actually, but very close)
SRAM's future

- SRAM is a mature technology. No new, big breakthroughs or advances are expected beyond CMOS scaling.