1. Adders: Prove that for two’s complement number system arithmetic, the overflow of the addition is determined by the last two carry bits, i.e. $overflow_flag = c_n \oplus c_{n-1}$.

2. Adders: A carry look ahead adder inputs two-bit numbers (a_1, a_0) and (b_1, b_0), and a carry in c_0. Use a minimal two-level NAND gate network to implement the carry out c_2.

3. Subtracter: A subtracter inputs a two-bit number (x_1, x_0), a subtrahend (y_1, y_0) and a borrow-in bit b_0, and outputs the difference (d_1, d_0) and a borrow-out bit b_2.
 3.1. Write the boolean expression of borrow-out bit b_2 as a function of variables x_1, x_0, y_1, y_0, b_0.
 3.2. Use two full adders and a minimal number of AND, OR, NOT gates to implement a look-ahead subtracter. Draw the schematic diagram.

4. Serial Adders: A sequential adder inputs a_i, b_i, the i’th bit of two binary numbers in each clock cycle for $i = 0$ to $n - 1$ and outputs the sum s_i. Implement the adder with a JK flip-flop, and a minimal AND-OR-NOT network (if the network is needed). Draw the schematic diagram.

5. Counters: Given modulo-16 counters, draw the logic diagram to show the following designs.
 5.1. Design a module-200 counter with a repeated output.
 5.2. Design a counter with a repeated output sequence 15, 0, 1, 2, 8, 9, 10, 6, 7, with a modulo-16 counter and a minimal combinational network. Write the Boolean expression and draw the schematic diagram.

6. Design a counter with a repeated output sequence 0, 1, 2, 4, 5, 6, 3, with a modulo-8 counter and a minimal AND-OR-NOT network. Write the Boolean expression and draw the schematic diagram.

7. System Designs: Implement the following algorithm.

 Alg($X, Y, Z, start, U, done$);
 Input $X[7 : 0], Y[7 : 0], Z[7 : 0], start$;
 Output $U[7 : 0], done$;
 Local-object $A[7 : 0], B[7 : 0], C[7 : 0]$;
 S1: If $start$ goto S1;
 S2: $done <= 0 || A <= X || B <= Y || C <= Z$;
 S3: $A <= Add(A, B)$;
 S4: If $B'[7]$ goto S3 $|| B <= Inc(B)$;
 S5: If $C'[7]$ goto S3 $|| C <= Inc(C)$;
 S6: $U <= A || done <= 1 ||$ goto S1;
 End Alg

 7.1. Design a data subsystem that is adequate to execute the algorithm. Draw the schematic diagram to show the design.
 7.2. Design the control subsystem (i) draw the state diagram; (ii) draw the logic diagram that implements the control subsystem with a one hot encoding design.