Multiplication in Three Pieces: 20 pts. In class, we saw a divide and conquer algorithm for multiplication that divided each n bit integer into high and low positions, each $n/2$ bits long. Consider algorithms that break the integers up into three pieces instead, the high order, mid order, and low order pieces, each $n/3$ bits long. What is the best divide-and-conquer multiplication algorithm of this type you can find? Is it better or worse than the two piece algorithm from class?

Base conversion: 20 points Consider the problem of converting a base 3 integer into decimal. Give an efficient algorithm (in terms of single digit operations) for this problem, trying to beat the $O(n^2)$ algorithm on the calibration homework. You can use the multiplication algorithm from class (or above) as a subroutine.

Least Common Ancestor: 20 points Consider the following recursive algorithm that takes as input a binary tree T.

Each non-leaf in T, x, has left-child $x.left$, and right child $x.right$, and each non-root has parent $x.parent$. (Child pointers at leaves and the parent pointer at the root return NIL). It uses a depth-first search procedure DFS that is linear-time in the size of the sub-tree and returns the list of nodes in the sub-tree. It computes, for each pair of nodes x and y in T, the deepest node that is an ancestor of both x and y, and stores it in an array $LCA[x,y]$. The main idea is that if x is in the left sub-tree of the root, and y is in the right sub-tree, then the only common ancestor of x and y is the root. Otherwise, the least common ancestor is in the subtree that contains both x and y.

LeastCommonAncestor(r: node)
1. $LCA[r,r] ← r$
2. IF $r.left ≠ NIL$ THEN
3. LeastCommonAncestor($r.left$);
4. $L_1 ← DFS(r.left)$;
5. IF $r.right ≠ NIL$ THEN
6. LeastCommonAncestor($r.right$);
7. $L_2 ← DFS(r.right)$;
8. FOR each $x ∈ L_1$
9. FOR each $y ∈ L_2$
First, give a recurrence relation for the time of this algorithm when the input is a \emph{complete binary tree} of size \(n = 2^d - 1 \), where \(d \) is the depth of the tree. (Note that such a complete binary tree is always perfectly balanced, with left and right sub-trees of the same size.), and solve it to give a time analysis for the algorithm in the complete binary tree case. Then give a \emph{worst-case} analysis for the time, not making any assumptions about the input tree.

Back-tracking: Hamiltonian path Consider the following algorithm for deciding whether a graph has a Hamiltonian Path from \(x \) to \(y \), i.e., a simple path in the graph from \(x \) to \(y \) going through all the nodes in \(G \) exactly once. (\(N(x) \) is the set of neighbors of \(x \), i.e. nodes directly connected to \(x \) in \(G \)).

1. \(\text{HamPath}(G, x : \text{node}, y : \text{node}) \)
2. If \(x = y \) is the only node in \(G \) return \text{True}.
3. If no node in \(G \) is connected to \(x \), return \text{false}.
4. For each \(z \in N(x) \) do:
 5. If \(\text{HamPath}(G - \{x\}, z, y) \), return \text{true}.
6. Return \text{false}

a. Explain (informally) why this algorithm is correct. (5 points) b. If every node of the graph \(G \) has degree (number of neighbors) at most 3, how long will this algorithm take at most? (15 points) (Hint: you can get a tighter bound than the most obvious one.)

Implementation: 20 pts Implement a back-tracking algorithm for maximum independent set (such as from class). Run your algorithm on random graphs with edge probability \(1/2 \) (as in the previous assignment) for \(n \) as many different powers of 2 as you can without using more than a day computer time on any one instance. How does the actual maximum independent set size compare to the size found by the greedy heuristic last assignment?