Plan for today

Main search strategy
- Proof-system search
- Interpretation search

Cross-cutting aspects
- Equality
- Induction
- Quantifiers
- Decision procedures

1. Recap example showing the integration of backtracking search, E-graph, and matching heuristic
2. Decision procedures

VC for the trans rule

- Show that if statements \(x := y \) and \(x := c \) are executed in a state where \(y = c \), then the resulting states are the same.

```latex
\text{if } \text{hasConstantValue}(Y, C) @in \land \text{currStmt} == [Y = X] \text{ then transform to } [X = C]
```

VC for the trans rule

- Show that if statements \(x := y \) and \(x := c \) are executed in a state where \(y = c \), then the resulting states are the same.

```latex
\forall x,y,c,\sigma . \sigma[y] = c \Rightarrow \\
\forall v . \text{step}(x := y, \sigma)[v] = \\
\text{step}(x := c, \sigma)[v]
```

Background axioms

- If \(a := k \) gets stepped in store \(\sigma \), the resulting store is \(\sigma \) with “a” updated to “k”.
- If \(a := b \) gets stepped in store \(\sigma \), the resulting store is \(\sigma \) with “a” updated to the value of “b”.

```latex
\forall x,y,c,\sigma . \sigma[y] = c \Rightarrow \\
\forall v . \text{step}(x := y, \sigma)[v] = \\
\text{step}(x := c, \sigma)[v]
```

Background axioms

- Axioms:
 \(\forall a,k,\sigma . \text{step}(a := k, \sigma) = \text{store}(\sigma, a, k) \)
 \(\forall a,b,\sigma . \text{step}(a := b, \sigma) = \text{store}(\sigma, a, \sigma[b]) \)

- Show:
 \(\forall x,y,c,\sigma . \sigma[y] = c \Rightarrow \\
 \forall v . \text{step}(x := y, \sigma)[v] = \\
 \text{step}(x := c, \sigma)[v] \)
Expand

- Axioms:
 \[\forall a,k,\sigma . \text{step}(a := k, \sigma) = \text{store}(\sigma, a, k) \]
 \[\forall a,b,\sigma . \text{step}(a := b, \sigma) = \text{store}(\sigma, a, \sigma[b]) \]
- Show:
 \[\forall x,y,c,\sigma . \sigma[y] = c \Rightarrow \]
 \[\forall v . \text{step}(x := y, \sigma)[v] = \text{step}(x := c, \sigma)[v] \]

Skolemize

\[\neg \sigma[y] = c \vee \]
\[\text{step}(x := y, \sigma)[v] = \text{step}(x := c, \sigma)[v] \]

Refutation

\[\neg \sigma[y] = c \vee \]
\[\text{step}(x := y, \sigma)[v] = \text{step}(x := c, \sigma)[v] \]

Negate formula and show that the negation is unsatisfiable
σ[y] = c
step(x := y, σ)[v] ≠ step(x := c, σ)[v]

Two ways to refute:

* Formula becomes trivially false
* Set of assumed literals is inconsistent

Equality using E-graph

σ[y] = c
step(x := y, σ)[v] ≠ step(x := c, σ)[v]
Equality using E-graph

\[\sigma[y] = c \]
\[\text{step}(x := y, \sigma)[v] = \text{select} \left(\text{step}(x := c, \sigma)[v] \right) \]

Matching

\[\forall a, b, \sigma. \quad \text{step}(a := b, \sigma) = \text{store}(\sigma, a, b) \]

\[\forall a, b, \sigma. \quad \text{step}(a := b, \sigma)[v] = \text{select} \left(\text{step}(x := c, \sigma)[v] \right) \]
Matching

In summary, add:

\[
\text{step}(x := c, \sigma) = \text{store}(\sigma, x, c)
\]
\[
\text{step}(x := y, \sigma) = \text{store}(\sigma, x, \sigma[y])
\]

\[
\sigma[y] \rightarrow c
\]
Compute congruence closure

Exhaustive Interpretation search

\[L_1 \land L_2 \]
\[L_1 \triangleq \sigma[y] = c \]
\[L_2 \triangleq \text{step}(x := y, \sigma)[v] \neq \text{step}(x := c, \sigma)[v] \]

Decision procedures

- Decision procedures can be used as standalone provers
- But we are more concerned with how decision procedures can be used within the context of a "heuristic" theorem prover
 - A heuristic theorem prover is a theorem prover for an undecidable logic that uses heuristics to guide its search
 - We use the term "heuristic" to avoid confusion between the larger heuristic prover and the decision procedures that are being integrated into this larger prover
- Decision procedures are complete algorithms for determining the validity of a formula in a given logic
- Decision procedures exist for many logics
 - EUF
 - Theory of lists
 - Theory of arrays
 - Theory of linear arithmetic over reals or integers
 - Theory of bit-vectors
 - ...
- Why incorporate decision procedures into a heuristic prover?
- Because once the search reaches a formula in a decidable subset of the original logic, the strategies of the heuristic prover may be inefficient and incomplete
Issues

• There are two issues to consider when incorporating decision procedures into a heuristic prover
 – Communication between decision procedures and the heuristic prover
 – Communication between decision procedures

In Simplify--

• Communication between decision procedures
 – Don’t have to deal with this, because Simplify-- has only one decision procedure, namely EUF

In Simplify--

• Communication from heuristic prover to decision procedures
• Communication from decision procedures to the heuristic prover

• Communication from heuristic prover to decision procedures
 – Push equalities into the E-graph incrementally
 • Does not require the decision procedure to expose its internal details
• Communication from decision procedures to the heuristic prover
 – Matching heuristic looks into E-graph
 • Motivation is to improve the heuristic of the prover
 • For efficiency, expose details of the decision procedure’s data structures
 – Explicating proofs used to guide the backtracking search
 • Motivation is efficiency

Issues again

• Communication between decision procedure and the heuristic prover
 – We’ve seen how this works in Simplify--
• Communication between decision procedures
 – This is what’s next

Combining decision procedures

• Efficient decision procedures exist for many decidable logics, but some formulas do not belong to any of these logics
• Instead, they belong to a combination of these logics
• For example:

```java
if currStmt == [X = Y]
then geq(X,Y)@out
```
Nelson-Oppen example

- $x \leq y \land y \leq x + \text{car}(\text{cons}(0, x)) \land \neg P(h(x)) \land P(h(y)) \land P(0)$

Correctness

- If a contradiction is found, return UNSAT
 - This is clearly sound, if each decision procedure is sound
- If there are no more equalities to be found by any of the decision procedures, return SAT
 - Is this complete? Have the decision procedures exchanged enough info?
 - Each decision procedure has found its own satisfying assignments, but how do we know that these satisfying assignments are compatible (ie: don’t contradict each other)

Convex theories

- A theory is convex if whenever a satisfiable conjunction of literals entails a disjunction of equalities of variables, then it entails one of the equalities
- Example:
 - Theory of linear arithmetic with equalities
- For convex theories:
 - If no equalities can be found, then it is impossible for there to be a disjunction of equalities that can be found; therefore, no missed equalities

Nonconvex theories

- Example:
 - Reals under multiplication
 - $xy = 0 \land z = 0$ entails $x = 0$ or $y = 0$
 - Integers under $+$ and \leq
 - $x = 1 \land y = 2 \land 1 \leq z \leq 2$ entails $x = z = y = 2$
 - Theory of sets
 - Theory of arrays
- For such theories, must perform a case split when a disjunction of equalities is entailed
 - Try each disjunct recursively.
 - If any one returns SAT, return SAT
 - If all disjuncts return UNSAT, return UNSAT

Algorithm

- Given a formula F that is a conjunction of literals over theories S and T, returns whether F is SAT or UNSAT
 1. Assign conjunctions to F_S and F_T so that F_S is a conjunction of S-literals and F_T is a conjunction of T-literals
 2. If either F_S or F_T is unsatisfiable, return UNSAT
 3. If either F_S or F_T entails some equality between variables not entailed by the other, then add the equality as a new conjunct to the one that does not entail it. Goto step 2.
 4. If either F_S or F_T entails a disjunction $x_1 \lor \ldots \lor x_k$ of equalities between variables, then for each i from 1 to k, apply the procedure recursively to $F_S \land F_T \land x_i$. If any recursive call returns SAT, return SAT. Otherwise return UNSAT.
 5. Return SAT
Adding Nelson-Oppen to Simplify--

- Each decision procedure keeps track of its own information.
- Decision procedure for theory T exports a function assert(F), where F is a literal in T.
- While performing the backtracking search, if a literal is asserted, add that literal (using assert) to the decision procedure for the theory the literal belongs to.
 - If the literal belongs to a combination of theories, split the literal into a conjunction of literals, each one belonging to only one theory.

Calling assert on a decision procedure may cause a whole bunch of equalities to be propagated, all of which are added to the E-graph.

Case splitting falls naturally out of the backtracking search algorithm.
 - If a disjunction of equalities is implied in one of the decision procedures, then add the disjunction as a new clause in the current formula.

Example

- \(xy = 0 \land z = 0 \land f(f(x) - f(z)) \neq f(z) \land f(f(y) - f(z)) \neq f(z) \)

Example

- \(xy = 0 \land z = 0 \land f(f(x) - f(z)) \neq f(z) \land f(f(y) - f(z)) \neq f(z) \)