ESC Verification algorithm

- Given function body annotated with precondition P and post-condition Q:
 - Compute wp of Q with respect to function body
 - Ask a theorem prover to show that P implies the wp
- We saw several examples last time
- But we still haven’t seen how to handle:
 - loops, functions calls, and pointers

Reasoning About Programs with Loops

- Loops can be handled using conditionals and joins
- Consider the while(E) S statement
- if (1) $P \Rightarrow I$ (loop invariant holds initially)
 and (2) $I \& \& E \Rightarrow Q$ (loop establishes the postcondition)
 and (3) $(I \& \& E) S (I)$ (loop invariant is preserved)
Loop Example

- Let’s verify
 \(\{ x = 8 \land y = 16 \} \text{ while } (x > 0) \{ x--; y -= 2; \} \{ y = 0 \} \)
 - Is this true?
 \(\{ x = 8 \land y = 16 \} \)
 \(T \}
 \(F \}
 \(\{ y = 0 \} \)
 \(x > 0 \)
 \(\{ x = 8 \land y = 16 \} \)

- We must find an appropriate invariant \(I \)
 - Try one that holds initially \(x = 8 \land y = 16 \)
 - Try one that holds at the end \(y = 0 \)

Loop Example (II)

- Guess the invariant \(y = 2^x \)
 \(\{ y = 2^x \} \)
 \(\{ x = 8 \land y = 16 \} \)

- Must check
 - Initial: \(x = 8 \land y = 16 \Rightarrow y = 2^x \)
 - Preservation: \(y = 2^x \land x > 0 \Rightarrow y = 2^x(x-1) \)
 - Final: \(y = 2^x \land x <= 0 \Rightarrow y = 0 \)

Functions

- Consider a binary search function \(bsearch \)
 \(\text{int } bsearch(\text{int } a[], \text{int } p) \{ \)
 \(\text{sorted}(a) \)

Function Call Example

- Consider the call
 \(\{ \text{sorted}(array) \} \)
 \(y = bsearch(array, 5) \)
 \(\text{if} \ y \neq -1 \{ \)
 \(\{ \text{array}[y] = 5 \} \)
 \(\text{Post}[r := y, a := array, p := 5] \)

Function Calls

- Consider a call to function \(F(\text{int } in) \)
 - With return variable \(out \)
 - With precondition \(\text{Pre} \), postcondition \(\text{Post} \)

Rule for function call:

\(y = F(E) \)

\(\{ P \land \text{Pre}[\text{in} := E] \} \)

\(\{ Q \land \text{Post}[\text{out} := y, \text{in} := E] \} \Rightarrow Q \)
Function Calls: backward

• Consider a call to function $F(int \ in)$
 – With return variable out
 – With precondition Pre, postcondition $Post$

```
\begin{align*}
y = F(E) \quad \{Q\}
\end{align*}
```

Pointers and aliasing

```
\begin{align*}
x = \ast y + 1 \quad \{x == 5\}
\end{align*}
```

Example where regular rule doesn’t work

```
\begin{align*}
x = \ast y + 1
\end{align*}
```

Pointers and aliasing

```
\begin{align*}
x = \ast y + 1 \quad \{\ast y == 4\} \quad \text{Regular rule worked in this case!}
\end{align*}
```

Example where regular rule doesn’t work

```
\begin{align*}
x = \ast y + 1 \quad \{x == \ast y + 1\}
\end{align*}
```
Example where regular rule doesn’t work

\[
x = y + 1 \\
\{ x = y + 1 \}
\]

Pointer stores

\[
\begin{align*}
x &= y + 1 \\
\{ x = y + 1 \}
\end{align*}
\]

One solution

- Perform case analysis based on all the possible alias relationships between the LHS of the assignment and part of the postcondition
- Can use a static pointer analysis to prune some cases out
- However, exponentially many cases in the pointer analysis, which leads to large formulas.

- eg, how many cases here:

\[
\begin{align*}
\ast x &= y + a \\
\{ \ast z &= \ast y + b \}
\end{align*}
\]

Another solution

- Up until now the program state has been implicit. Let’s make the program state explicit...
- A predicate is a function from program states to booleans.

- So for \(wp(S, Q) \), we have:
 - \(Q(\sigma) \) returns true if \(Q \) holds in \(\sigma \)
 - \(wp(S, Q)(\sigma) \) returns true if \(wp(S, Q) \) holds in \(\sigma \)

New formulation of \(wp \)

- Suppose \(step(S, \sigma) \) returns the program state resulting from executing \(S \) starting in program state \(\sigma \).

- Then we can express \(wp \) as follows:
 \[
 wp(S, Q)(\sigma) = \]
New formulation of wp

• Suppose \(\text{step}(S, \sigma) \) returns the program state resulting from executing \(S \) starting in program state \(\sigma \).

• Then we can express \(\text{wp} \) as follows:
 \[
 \text{wp}(S, Q)(\sigma) = Q(\text{step}(S, \sigma))
 \]

Example in Simplify syntax

From previous slide: \(\text{wp}(S, Q)(\sigma) = Q(\text{step}(S, \sigma)) \)

\[
\begin{align*}
\text{x} &= \text{y} + 1 \\
\{ \text{y} == 5 \}
\end{align*}
\]

\(Q \) is: \((\text{EQ (select s y) 5})\)

\(\text{step}(S, \sigma) \) is: \((\text{store s (select s x) (+ (select s y) 1)})\)

\(\text{wp}(S, Q) \) is:

\((\text{EQ (select (store s (select s x) (+ (select s y) 1)) y) 5})\)

ESC/Java summary

• Very general verification framework
 – Based on pre- and post-conditions

• Generate VC from code
 – Instead of modelling the semantics of the code inside the theorem prover

• Loops and procedures require user annotations
 – But can try to infer these

Search techniques

The map
Techniques in more detail

Main search strategy
- Theorem proving is all about searching
- Categorization based on the search domain:
 - interpretation domain
 - proof-system domain

Cross-cutting aspects
- Equality...
 - common predicate symbol
- Quantifiers...
 - need good heuristics
- Induction...
 - for proving properties of recursive structures
- Decision procedures...
 - useful for decidable subsets of the logic

Searching
- At the core of theorem proving is a search problem
- In this course, we will categorize the core search algorithms based on what they search over
 - proof domain: search in the proof space, to find a proof
 - semantic domain: search in the “interpretation” domain, to make sure that there is no way of making the formula false
- Before we dive in, let’s go back to some basic logic
Logics
• Suppose we have some logic
 – for example, propositional logic
 \[\phi ::= \text{true} \mid \text{false} \mid x \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \Rightarrow \phi \]
 – or first-order logic
 \[t ::= x \mid F(t, \ldots, t) \]
 \[\phi ::= \text{true} \mid \text{false} \mid P(t, \ldots, t) \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \Rightarrow \phi \mid \forall x. \phi \mid \exists x. \phi \]

The two statements
\[
\Gamma \models \phi \quad \Gamma \vdash \phi
\]
– set of formulas
– one formula
– “entails, or models”
– “is provable from”

In all worlds where the formulas in \(\Gamma \) hold, \(\phi \) holds

Semantic
Syntactic

Interpretations
• Intuitively, an interpretation \(\mathcal{I} \) represents the “world” in which you evaluate a formula
• Provides the necessary information to evaluate formulas
• The structure of \(\mathcal{I} \) depends on the logic
• Interpretations are also sometimes called models

Interpretations in PROP
• Given a formula \(A \land B \), what do we need to evaluate it?
• We need to know the truth values of \(A \) and \(B \)
• In general, we need to know the truth values of all propositional variables in the formula
• Note that the logical connectives are built in, we don’t have to say what \(\land \) means

Interpretations in FOL
• Given a formula: \(\forall x. P(f(x)) \Rightarrow P(g(x)) \), what do we need to know to evaluate it?
• We need to know how the function symbol \(f \) and predicate symbol \(P \) operate
• In general, need to know how all function symbols and predicate symbols operate
• Here again, logical connectives are built-in, so we don’t have to say how \(\Rightarrow \) operates.

More formally, for PROP
• An interpretation \(\mathcal{I} \) for propositional logic is a map (function) from variables to booleans
 – So, for a variable \(A \), \(\mathcal{I}(A) \) is the truth value of \(A \)
More formally, for FOL

• An interpretation for first-order logic is a quadruple (D, Var, Fun, Pred)
 • D is a set of objects in the world
 • Var is a map from variables to elements of D
 – So Var(x) is the object that variable x represents

More formally, for FOL

• Fun is a map from function symbols to math functions
 – Fun(f) is the math function that the name f represents
 – For example, in the interpretation of \(\text{LEQ}(\text{Plus}(4,5), 10) \), we could have
 • D is the set of integers
 • \(\text{Fun}(4) = 4 \), \(\text{Fun}(5) = 5 \), \(\text{Fun}(10) = 10 \), \(\text{Fun}(<) = - \)
 – But, we could also have \(\text{Fun}(\text{Plus}) = - \)
 – If f is an n-ary function symbol, then Fun(f) has type \(D^n \rightarrow D \)

More formally, for FOL

• Pred is a map from predicate symbols to math functions
 – Pred(P) is the math function that the name P represents
 – For example, in the interpretation of \(\text{LEQ}(\text{Plus}(4,5), 10) \)
 – we could have \(\text{Pred}(\text{LEQ}) = \leq \)
 – If P is an n-ary predicate, then Pred(P) has type \(D^n \rightarrow \text{bool} \)

Putting interpretations to use

• We write \([\phi]_I \) to denote what \(\phi \) evaluates to under interpretation \(I \)
 • In PROP
 – \([A]_I = I(A) \)
 – \([\neg \phi]_I \) is true iff \([\phi]_I \) is not true
 – \([\phi_1 \land \phi_2]_I \) is true iff \([\phi_1]_I \) and \([\phi_2]_I \) are true
 – \([\phi_1 \lor \phi_2]_I \) is true iff \([\phi_1]_I \) or \([\phi_2]_I \) is true
 – etc.

In FOL

• \([x]_I = \text{Var}(x) \), where \(\Gamma = (D, \text{Var}, \text{Fun}, \text{Pred}) \)
• \([f(t_1, \ldots, t_n)]_I = \text{Fun}(f)([t_1]_I, \ldots, [t_n]_I) \), where \(\Gamma = (D, \text{Var}, \text{Fun}, \text{Pred}) \)
• \([P(t_1, \ldots, t_n)]_I = \text{Pred}(P)([t_1]_I, \ldots, [t_n]_I) \), where \(\Gamma = (D, \text{Var}, \text{Fun}, \text{Pred}) \)
• Rules for PROP logical connectives are the same

Quantifiers

• \([\forall x. \phi]_I(D, \text{Var}, \text{Fun}, \text{Pred}) = \text{true iff} \)

 for all \(o \in D \)
 \([\phi]_I(D, \text{Var}[x := o], \text{Fun}, \text{Pred}) = \text{true} \)

• \([\exists x. \phi]_I(D, \text{Var}, \text{Fun}, \text{Pred}) = \text{true iff} \)

 there is some \(o \in D \) for which
 \([\phi]_I(D, \text{Var}[x := o], \text{Fun}, \text{Pred}) = \text{true} \)
Semantic entailment

- We write $\Gamma \vDash \phi$, where $\Gamma = \{\phi_1, \ldots, \phi_n\}$, if for all interpretations I:
 - $(\text{Forall } i \text{ from } 1 \text{ to } n \ [\ [\phi_i]_I = \text{true}) \implies [\phi]_I = \text{true}$
- For example
 - $\{A \Rightarrow B, B \Rightarrow C\} \vDash A \Rightarrow C$
 - $\{\} \vDash (\forall x. (P(x) \land \neg Q(x))) \iff (\forall x. P(x) \land \forall x. Q(x))$
- We write $\vDash \phi$ if $\{\} \vDash \phi$
 - we say that ϕ is a theorem

Search in the semantic domain

- To check that $\vDash \phi$, iterate over all interpretations I and make sure that $[\phi]_I = \text{true}$
- For propositional logic, this amounts to building a truth table
 - expensive, but can do better, for example using DPLL
- For first-order logic, there are infinitely many interpretations
 - but, by cleverly enumerating over Herbrand’s universe, we can get a semi-algorithm

Provability

- $\Gamma \vdash \phi$
- This judgement says that ϕ is provable from Γ
- Inference rules tell us how we can derive this judgement
- These inference rules are completely syntactic

Some inference rules

- $\Gamma \vdash \phi$
- Assume $\Gamma, \alpha \vdash \beta$
 - $\Gamma, \alpha \vdash \beta \\
 - $\Gamma, \alpha \vdash \phi \\

A sample derivation

- Soundness: $\Gamma \vdash \phi$ implies $\Gamma \vDash \phi$
- Completeness: $\Gamma \vDash \phi$ implies $\Gamma \vdash \phi$

- Virtually all inference systems are sound
- Therefore, to establish $\Gamma \vDash \phi$, all one needs to do is find a derivation of $\Gamma \vdash \phi$
- Can do this by searching in the space of proofs
 - forward, backward or in both direction
Next class

• DPLL
• Herbrand’s universe
• Davis-Putnam paper
• Explicating proofs paper