CSE 202 Homework 2
Greedy algorithms and Divide-and-Conquer
Due Tuesday, May 20

For each of the algorithm problems, design as asymptotically efficient an algorithm as possible. Give a correctness argument (explanation, if it is relatively simple, or proof if not) and time analysis. You may use any well-known algorithm or data structure, or algorithm from the text or from class, as a sub-routine without needing to provide details.

Shifts Problem 15 on page 196 of the textbook.

Oxen pairing Give an efficient algorithm for the following problem: We have n oxen, $Ox_1, .. Ox_n$, each with a strength rating S_i. We need to pair the oxen up into teams to pull a plow; if Ox_i and Ox_j are in a team, we must have $S_i + S_j \geq P$, where P is the weight of a plow. Each ox can only be in at most one team. Each team has exactly two oxen. We want to maximize the number of teams. [5 points correct algorithm, 12 points correctness proof, 3 points efficiency]

Approximate min cost bisection clustering A $[1 - 2]$ metric on $2n$ points is a symmetric distance function $1 \leq d(x, y) = d(y, x) \leq 2$ for each points $x \neq y$. $d(x, x) = 0$ by convention.) (Note that such a function is always a metric, i.e., always obeys the triangle inequality $d(x, z) \leq d(x, y) + d(y, z)$.) A bisection clustering of the points divides them into two equal size disjoint sets S and T with $|S| = |T| = n$. You want to find a bisection clustering that minimizes the sum of edge weights within a cluster, $\sum_{x,y \in S} d(x, y) + \sum_{x,y \in T} d(x, y)$. Find the best polynomial time approximation algorithm you can for this problem. (Most points based on approximation ratio. Ratio 1.5 is worth most of the points.)

Base Conversion Give an algorithm that inputs an array of n base base 10 digits representing a positive integer and outputs an array of bits representing the same integer in base 2. Your algorithm should be $o(n^2)$, strictly better than the time asked for on the calibration homework. You will probably need to use a divide-and-conquer strategy, and use a fast integer multiplication sub-routine (from class). [3 points correct algorithm and correctness proof, 7 points efficiency]

Implementation: Integer Multiplication Implement the $O(n \log^3 3)$ divide-and-conquer algorithm for integer multiplication from class, but with a threshold, below which naive “gradeschool” multiplication is used. Use an array of digits to represent inputs and outputs. Experimentally determine the optimal threshold. For what values of n do you see an improvement in the time using divide-and-conquer, both using no threshold and using the optimal threshold?
When describing an algorithm, don’t write out an entire pseudo-code; just describe it at a high level. Be sure to specify completely all data structures used in the algorithm. Include correctness proofs and time analysis for all algorithms, except for the implementation problem.