CSE140L: Components and Design Techniques for Digital Systems Lab

Introduction

Tajana Simunic Rosing
Welcome to CSE 140L!

- **Course time:** W 2-2:50pm, WLH 2205
- **Discussion session:** F 12-12:50pm, CSE 3219
- **Instructor:** Tajana Simunic Rosing
 - Email: tajana@ucsd.edu; please put CSE140L in the subject line
 - Ph. 858 534-4868
 - Office Hours: Tu/Th 1-2pm, CSE 2118
- **Instructor’s Assistant:** Sheila Manalo
 - Email: shmanalo@ucsd.edu
 - Phone: (858) 534-8873
- **TA:** Ling Zhang
 - Email: lizhang@cs.ucsd.edu
 - Office hours: M 2-3pm; W 10-11am in CSE 3219
- **TA:** Chun Chen Liu
 - Email: chl084@ucsd.edu
 - Office hours: T 10am-12pm in CSE 3219
- **Class Website:**
 - http://www.cse.ucsd.edu/classes/sp08/cse140L/
- **Grades:** http://webct.ucsd.edu
Course Description

• Prerequisites:
 – CSE 20 or Math 15A, and CSE 30.
 – CSE 140 must be taken concurrently

• Objective:
 – Introduce digital components and system design concepts through hands-on experience in a lab

• Grading
 – Labs (4): 70%
 • We have 15 Xilinx platforms with PCs – organize in teams of two
 • Schedule for lab access; need to schedule a demo to TA by lab due date
 • Go to Robin Knox [rsknox@cs.ucsd.edu] office in CSE 2248 to program your student ID for access to CSE 3219
 – Monday-Thursday 10-12:30 and 2:00-4:00
 – Final exam: 30%
 – Regrade requests: turn in a written request at the end of the class where your work is returned
Textbook and Recommended Readings

• **Required textbook:**
 – Contemporary Logic Design by R. Katz & G. Borriello

• **Recommended textbook:**
 – Digital Design by F. Vahid

• Lecture slides are derived from the slides designed for both books
Hardware we will use

• Freely available in CSE 3219 lab:
 – Xilinx Virtex-II Pro Development System (XUPV2P)
 – PC in the lab already have ISE tools installed. You can program boards in the lab only!
 – You can download on your own PC Webpack to implement and test your design before programming the board
 www.xilinx.com/ise/logic_design_prod/webpack.htm

• Alternative: Altera Board you can buy in the bookstore for $100
Outline

• Introduction to Xilinx board & tools
• Transistors
 – How they work
 – How to build basic gates out of transistors
 – How to evaluate delay
• Pass gates
• Muxes
Basic FPGA Architecture
Overview

• All Xilinx FPGAs contain the same basic resources
 – Slices grouped into configurable logic blocks - CLBs
 • Contain combinatorial logic and register resources
 – Input/Output Blocks - IOBs
 • Interface between the FPGA and the outside world
 – Programmable interconnect
 – Other resources
 • Processor
 • Memory
 • Multipliers
 • Global clock buffers
 • Boundary scan logic
Virtex-II Architecture

- I/O Blocks (IOBs)
- Block SelectRAM™ resource
- Dedicated multipliers
- Logic Blocks (CLBs)
- Programmable interconnect
- Configurable Logic Blocks (CLBs)
- Clock Management (DCMs, BUFGMUXes)
Slices and CLBs

• Each Virtex™-II CLB contains four slices
 – Local routing provides feedback between slices in the same CLB, and it provides routing to neighboring CLBs
 – A switch matrix provides access to general routing resources
Simplified Slice Structure

- Each slice has four outputs
 - Two registered outputs, two non-registered outputs
 - Two BUFTs associated with each CLB, accessible by all 16 CLB outputs

- Carry logic runs vertically, up only
 - Two independent carry chains per CLB
Detailed Slice Structure

- The next few slides discuss the slice features:
 - LUTs
 - MUXF5, MUXF6, MUXF7, MUXF8 (only the F5 and F6 MUX are shown in this diagram)
 - Carry Logic
 - MULT_ANDs
 - Sequential Elements
Look-Up Tables

- Combinatorial logic is stored in Look-Up Tables (LUTs)
 - Also called Function Generators (FGs)
 - Capacity is limited by the number of inputs, not by the complexity
- Delay through the LUT is constant
MUXF8 combines the two MUXF7 outputs (from the CLB above or below)

MUXF6 combines slices S2 and S3

MUXF7 combines the two MUXF6 outputs

MUXF6 combines slices S0 and S1

MUXF5 combines LUTs in each slice

Basic Architecture 14
Fast Carry Logic

- Simple, fast, and complete arithmetic Logic
 - Dedicated XOR gate for single-level sum completion
 - Uses dedicated routing resources
 - All synthesis tools can infer carry logic
Flexible Sequential Elements

- Either flip-flops or latches
- Two in each slice; eight in each CLB
- Inputs come from LUTs or from an independent CLB input
- Separate set and reset controls
 - Can be synchronous or asynchronous
- All controls are shared within a slice
 - Control signals can be inverted locally within a slice
MULT_AND Gate

- Highly efficient multiply and add implementation
 - Earlier FPGA architectures require two LUTs per bit to perform the multiplication and addition
 - The MULT_AND gate enables an area reduction by performing the multiply and the add in one LUT per bit
IOB Element

- **Input path**
 - Two DDR registers
 - DDR: double data rate
- **Output path**
 - Two DDR registers
 - Two 3-state enable DDR registers
- **Separate clocks and clock enables for I and O**
- **Set and reset signals are shared**
Distributed SelectRAM Resources

- 1 LUT = 16 bits RAM
- Synchronous write
- Asynchronous read
 - Accompanying flip-flops can be used to create synchronous read
- RAM and ROM are initialized during configuration
 - Data can be written to RAM after configuration
- Emulated dual-port RAM
 - One read/write port
 - One read-only port
Block SelectRAM Resources

- Up to 3.5 Mb of RAM in 18-kb blocks
 - Synchronous read and write
- True dual-port memory
 - Each port has synchronous read and write capability
 - Different clocks for each port
- Supports initial values
- Synchronous reset on output latches
- Supports parity bits
 - One parity bit per eight data bits
Dedicated Multiplier Blocks

- 18-bit twos complement signed operation
- Optimized to implement Multiply and Accumulate functions
- Multipliers are physically located next to block SelectRAM™ memory

Data_A (18 bits) → 18 x 18 Multiplier → Output (36 bits)

- 4 x 4 signed
- 8 x 8 signed
- 12 x 12 signed
- 18 x 18 signed

Data_B (18 bits)
Virtex-II Pro Features

• 0.13 micron process
• Up to 24 RocketIO™ Multi-Gigabit Transceiver (MGT) blocks
 – Serializer and deserializer (SERDES)
 – Fibre Channel, Gigabit Ethernet, XAUI, Infiniband compliant transceivers, and others
 – 8-, 16-, and 32-bit selectable FPGA interface
 – 8B/10B encoder and decoder
• PowerPC™ RISC processor blocks
 – Thirty-two 32-bit General Purpose Registers (GPRs)
 – Low power consumption: 0.9mW/MHz
 – IBM CoreConnect bus architecture support
Xilinx Design Flow
ISE Project Navigator

- Built around the Xilinx design flow
 - Access to synthesis and schematic tools
 - Including third-party synthesis tools
 - Implement your design with a simple double-click
 - Fine-tune with easy-to-access software options
• Once a design is implemented, you must create a file that the FPGA can understand
 – This file is called a bitstream: a BIT file (.bit extension)
• The BIT file can be downloaded directly into the FPGA, or the BIT file can be converted into a PROM file, which stores the programming information

• Execute!!!
 – You will be responsible for a demo to TA
 – Turn in a report with answers to questions asked, schematics, truth tables, equations etc.
Combinational circuit building blocks:
Transistors, gates and timing

Tajana Simunic Rosing
The CMOS Circuit

- CMOS circuit
 - Consists of N and PMOS transistors
 - Both N and PMOS operate similar to basic switches

Silicon -- not quite a conductor or insulator: *Semiconductor*
N-MOS Tutorial – channel formation

- The Semiconductor-Oxide-Metal Combination in the Gate is effectively a **Parallel Plate Capacitor**

 ![Diagram of N-MOS channel formation]

- $V_{gs} = 0 \rightarrow$ lots of positive charge in p-type material, no current

 ![Diagram of N-MOS channel formation]

- Source: http://www.netsoc.tcd.ie/~mcgettrs/hvmenu/tutorials/TOCcmostran.htm
N-MOS Tutorial – channel formation (cont.)

- $V_{gs} > 0 \rightarrow$ + charge on the gate, - charge attracted to the oxide, + charge chased away from the oxide

- $V_{gs} = V_t \rightarrow$ channel of negative charge forms under the oxide; the oxide is depleted of + charge; $V_t =$ threshold voltage
N-MOS Tutorial – channel formation (cont.)

- $V_{gs} > V_{t}$ -> negative charge carriers form under the oxide; free electrons are thermally generated and form a conduction channel through which current can flow

- $V_{gs} > V_{t}$ & $V_{ds} = 0$ -> channel present, but no current flows
N-MOS Tutorial: Current flow

- $V_{ds} > 0 \rightarrow$ electric field (E) set up between source and drain, accelerates electrons with velocity v_d, small current forms between source and drain
 - $C_{ox} :$ oxide capacitance $= \frac{\varepsilon_{ox}}{t_{ox}}$ (oxide permittivity ε_{ox} and thickness t_{ox});
 - $\mu:$ mobility of charge carriers; W/L gate width and length

\[
I_D = \mu C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right]
\]
N-MOS Tutorial: Current flow

- $V_{ds} \geq V_{gs} - V_{t} \Rightarrow$ channel pinched off, saturated; constant current flows from drain to source
 - $C_{ox} :$ oxide capacitance = $\frac{\varepsilon_{ox}}{t_{ox}}$ (oxide permittivity ε_{ox} and thickness t_{ox});
 - $\mu:$ mobility of charge carriers; W/L gate width and length

\[I_{DSat} = \frac{\mu_n C_{ox} W}{2L} \left(V_{GS} - V_{T} \right)^2 \]
How about P-MOS?

• Everything is the same, but polarities of voltages reverse. Mobility μ is 2x smaller, so 2x less current is generated if all other parameters are kept constant
 – e.g. PMOS turns on when $V_{gs} < V_{t}$ and both are <0
Resistance

• Resistivity
 – Function of:
 • resistivity r, thickness t: defined by technology
 • Width W, length L: defined by designer
 – Approximate ON transistor with a resistor
 • $R = r' \frac{L}{W}$
 • L is usually minimum; change only W

$$R = \frac{\rho L}{tW} = \frac{\rho}{t} \frac{L}{W}$$

Source: Prof. Subhashish Mitra
Capacitance & Timing estimates

• Capacitor
 – Stores charge \(Q = C \cdot V \) (capacitance \(C \); voltage \(V \))
 – Current: \(\frac{dQ}{dt} = C \cdot \frac{dV}{dt} \)

• Timing estimate
 – \(D_t = \frac{C \cdot dV}{i} = \frac{C \cdot dV}{(V/R_{trans})} = R_{trans} \cdot C \cdot \frac{dV}{V} \)

• Delay: time to go from 50% to 50% of waveform
Charge/discharge in CMOS

• Calculate on resistance
• Calculate capacitance of the gates circuit is driving
• Get RC delay & use it as an estimate of circuit delay
 \[V_{\text{out}} = V_{dd} \left(1 - e^{-t/R_pC} \right) \]

Source: Prof. Subhashish Mitra
Inverter delay

- Delay: estimate using RC time constants
Digital logic abstraction

- Real transistors: voltage at the gate controls the current between source and drain
 - Too complex! Simplify!

- Guarantee that voltage always falls within two regions: logic 0 and logic 1
 - Level restore
 - Great to filter out noise (noise margins)
- Use RC time constants to approximate delay

Source: Prof. Subhashish Mitra
Basic CMOS gates

- Delay: estimate using RC time constants
CMOS Example

• The rules:
 – NMOS connects to GND, PMOS to power supply Vdd
 – Duality of NMOS and PMOS
 – Rp ~ 2 Rn => PMOS in series is much slower than NMOS in series

• Implement Z using CMOS: Z = (A + BC)’
Pass transistor

- Connects X & Y when A=1, else X & Y disconnected
 - $A_{\text{b}} = \text{not}(A)$
• Selects input to connect to Y
 - selA == 1: connects A to Y
 - selB == 1: connects B to Y
What we’ve covered thus far

- Xilinx Virtex II Pro board and tools
- Transistor design
- Building basic gates from CMOS
- Delay estimates
- Pass transistors
- Muxes