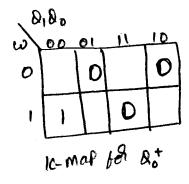
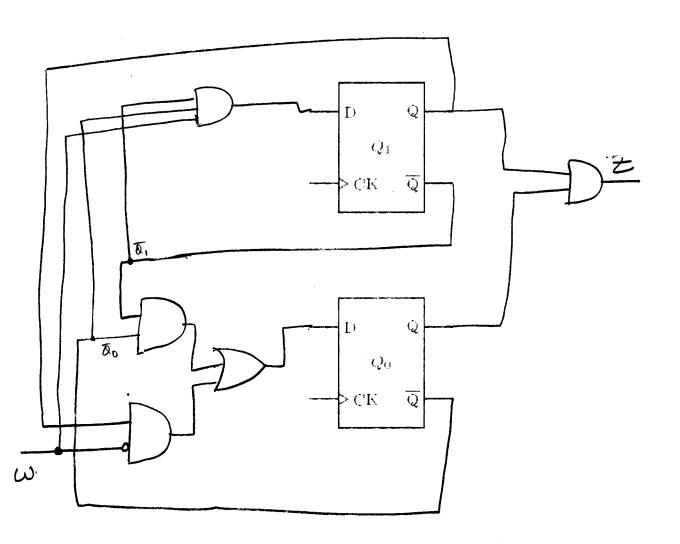

4. (10 points)

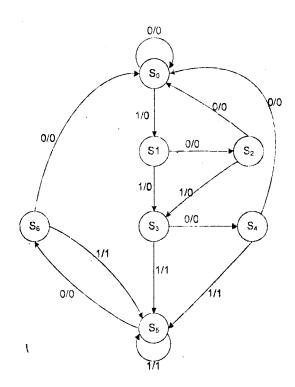

An FSM is defined by the following state transition table.

Present	Next	Output	
State $Q_1 Q_0$	$W=0$ $Q_1^+Q_0^+$	$W=1$ $Q_1^+Q_0^+$	Z
00	10	11	0
01	00	00	0
10	10	00	0
11	10	O O	1

(a) Derive the next state and output equations.



K-map 18 Qi+



-> Since this is a mobile machine, output defends only on Current State Z = 0.180

(b) Provide the logic schematic of this machine using only D flip-flops, AND gates, OR gates, and NOT gates.

5. Consider the following state diagram:

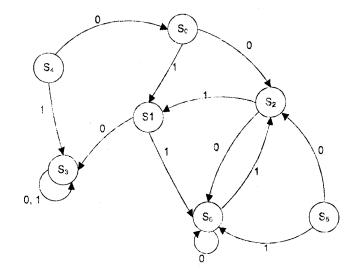
(a) Fill out the blanks in the state table

Present	Next	State	Output Y	
State	$\Lambda = 0$	A = 1	A = 0	A = 1
S_0	S_0	S_1	0	0
\mathbf{S}_1	52	53	0	0
\mathbf{S}_2	So	S_3	0	0
S_3	Sy	35	0	1
S_4	S_0	55	0	1
S_5	56	S5	0	1
S_6	So	S5	D	ì

(b) Label the rows and columns with states, and then fill the implication table.

S,	Soy 52 SI + 53					
Sz	So-So S1-53	S2-S0 S3-S3				
S 3	*	X	×			
Sy	*	*	X	Su-So Sp/S5		
Ss	*	7	×	Su-S6 S5-S5	Sa-S6 S5-S5	
S6	X	X	×	Su-So S5 \$5	So-So S5-S5	50,56 55-55
	So	۶,	82	S3	Su	<u> </u>

(c) List all the original states, grouped into maximal classes of compatibility. Use only as many groups as necessary.


$$g_0 = \frac{S_0}{g_1} = \frac{S_1}{g_2} = \frac{S_2}{g_3} = \frac{S_3, S_5}{S_4} = \frac{S_4, S_6}{g_5} = \frac{S_4, S_6}{g_5} = \frac{S_6}{g_6} = \frac{S_6}{$$

First Name:	Last Name:	PID:	

(d) Show the minimized state transition and output table. Fill in only as many rows of the table as necessary.

Present	Next State		Output Y	
State	A = 0	A = 1	$\Lambda = 0$	$\Lambda = 1$
g 0	90	9,	0	6
gı	92	93	0	0
g ₂	90.	93	0	0
g 3	gy	93	0	1
g 4	90	93	0	1
8 5				
g 6				

6. Consider the finite state machine shown below.

Implement a state assignment using the minimum bit-change heuristic. Show your result in both K-map and the table.

	<u> </u>	ot	11	10
O	50	52		54
1	SI	S6	S 5	\$ 3

State Name	Assignment			
State : tame	$Q_{\mathbb{R}}$	Q_1	Q_0	
S_0	0	0	0	
S_1	0	0	}	
S_2	0	t	0	
S_3		0	1	
S ₄	Í	0	0	
S_5	1	1	0	
S ₆	0	(1.	