1 Review

1. Let \(A \) and \(B \) be the sets \(A = \{x, y, z\} \) and \(B = \{x, y\} \).

 (a) No, \(A \) is not a subset of \(B \).

 (b) Yes, \(B \) is a subset of \(A \).

 (c) \(A \cup B = A = \{x, y, z\} \).

 (d) \(A \cap B = B = \{x, y\} \).

 (e) \(A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\} \).

 (f) \(P(A) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\} \).

 (g) No, \(P(A \times B) \neq P(A) \times P(B) \).

2. If \(X \) is a finite set with \(n \) elements, then \(P(X) \) has \(2^n \) elements.

2 Formal Description of a DFA

The strings \(\varepsilon, uuddud \) and \(duddud \) are accepted by \(M \) and \(dduddu \) is rejected. The DFA \(M \) counts up (towards 1) or down (towards 5) on a \(d \) or \(u \), respectively, not going outside the range 1–5. It accepts if the count ends at 3 or 5.

3 Simple DFAs

1. The start state of \(M_1 \) is \(q_0 \).
2. The set of accept states of \(M_1 \) is \(\{q_1\} \).
3. The start state of \(M_2 \) is \(q_0 \).
4. The set of accept states of \(M_2 \) is \(\{q_0, q_3\} \).
5. On input \(aabb \), \(M_1 \) goes through \(q_0, q_1, q_2, q_0, q_0 \).
6. The input \(aabb \) is not accepted by \(M_1 \).
7. On input \(baaba \), \(M_2 \) goes through \(q_0, q_1, q_2, q_1, q_3, q_2 \).
8. The input \(baaba \) is not accepted by \(M_2 \).
9. The empty string is not accepted by \(M_1 \).
10. The empty string is accepted by \(M_2 \).

4 Keycode Checker

We need 7 states to keep track of what input symbol is expected next, a state to handle incorrect inputs and an accept state.
5 Ternary Numbers mod 5

Each of the five states represents the number as seen so far, modulo 5. Each time a new trit\(^1\) is encountered, we multiply the current value by 3 and add the value of the trit.

\(^1\)A trit is a ternary digit.