Agenda
1. BFS as a shortest path algo.
2. Dijkstra
3. Which road to add?

BFS (Breadth-First Search)

- Defn - BFS on an unweighted graph \(G = (V,E) \) starting at \(s \in V \), assigns each node \(v \in V \) a level \((v) = \# \) of edges in shortest path from \(s \).

Example:
6-degrees of Kevin Bacon
Consider the friend graph of the world
- \(V = \) every person ever to live in the world
- \(E = \) \((u,v) \) if \(u \) and \(v \) are friends (or know each other)

Say you are node \(x \in V \). How far are you from Kevin Bacon? Use BFS! What level is KB on in \(BFS(G,v) \)?
2] Dijkstra

- What about weighted graphs?

- Dijkstra finds the following:

 Input: $G = (V, E)$; constant node s; weights $w_e \geq 0 \forall e \in E$.

 Output: Shortest Path Tree rooted at s to all $v \in V$.

Ex: SPT of G:

$G = s \quad 10 \quad 9 \quad d$

$\quad 4 \quad 1 \quad 2 \quad b \quad 20$

$\quad 2 \quad c$

SPT(s):

Note: Bellman-Ford finds SPs when w_e is arbitrary but no negative cycles in G. Why no neg. cycles?

- Dijkstra uses a priority queue + BFS-like search.

3] Which road to add? (4, 20)

Input: $G = (V, E)$ cities & roads; $w_e \geq 0$ length of road $e \in E$.

Output: Find $e' \in E'$ whose addition to G would result in the largest decrease in SP distance between s and t.

Idea: Learn $SPT(G, s)$ and $SPT(G', t)$.

For $e' = (u, v) \in E'$:

- Compute $d_S(u) + f_t(u) + f_t(v) + d_t(v)$.
- Find smallest.
Alg. \text{Road}(G, l_e, E', l_e', s, t)

1) Run \text{Dijkstra}(G, l_e, s) and \text{Dijkstra}(G, l_e, t) to get $d_s(v)$ and $d_t(v)$ (as defined earlier).

2) $\text{min-sp} = \min(d_s(t), d_t(s))$ and $\text{ret-edge} = \emptyset$.

3) For each $e' = (u, v) \in E'$:

 $\text{if}(d_s(u) + l_e + d_t(v) < \text{min-sp})$ then $\text{min-sp} = d_s(u) + l_e + d_t(v)$ and $\text{ret-edge} = e'$.

 $\text{if}(d_s(v) + l_e' + d_t(u) < \text{min-sp})$ then $\text{min-sp} = d_s(v) + l_e' + d_t(u)$ and $\text{ret-edge} = e'$.

4) return ret-edge.

$RT = O((|V| + |E|) \log |V|)$ for Dijkstra with binary heap.

For loop is $O(|E'|)$ so $O((|V| + |E|) \log |V| + |E'|)$

Correctness Claim: \text{Road}() returns e' iff e' is the road whose addition minimizes the SP dist from s to t.

\Rightarrow Assume \text{Road}() returns $e' = (u, v)$. Then either $d_s(u) + l_e + d_t(v)$ or $d_s(v) + l_e' + d_t(u)$ is smallest of all E', both of which are paths from s to t.

So, it is the new SP for T. They are also both SPs since d_s is a SP and d_t is also a SP.

\Leftarrow Let $e' = (u, v)$ be the road whose addition minimizes SP dist between s and t. Then either $d_s(u) + l_e + d_t(v)$ or $d_s(v) + l_e' + d_t(u)$ must be the length of the shortest path between s and t. This is what \text{Road}() tests for and minimizes.