Discussion Week 2

1. Warm Up
2. TopSort
3. S-t strongly connected

11. True or False?
 a) Running DFS on a directed acyclic graph (DAG) results in no back-edges, i.e., a back-edge means cycle, DAG has no cycles.
 b) In a directed graph G with 2 SCCs, it is always possible to add one edge to make it 1 SCC.

 \[a \xrightarrow{1} b \xrightarrow{2} d \text{ can't add edge to make 1 SCC.} \]

12. TopSort: Input: DAG

 output: A numbering \(n(v) \) of vertices such that for all edges \((u,v) \) in the graph, \(n(u) < n(v) \).

 "Linearize" graph.
 All DAGs can be linearized w/DFS!

 Only edges for which \(post(u) = post(v) \) are back edges... DAG has none!

 decreasing post: \(a, b, c, d \)
 \(n(v) = 1, 2, 3, 4 \)
 All edges go from left to right.
Input: DAG $G = (V, E)$; vertices s, t
Output: Number of different paths from s to t.

Example:

```
Ex:
   s
  / \
 /   \   \\
 a   b   c
   \   /
    \ /
     v
```

s, b, t
s, a, b, t
s, b, c, t
s, a, b, c, t

$= 4$ paths.

Idea: TopSort

```
S, a, b, c, E, e, d
```

- Let $\text{numpaths}[v] = \# \text{of paths from } v \text{ to } t$.
- If v is to right of t in TopSort:
 - $\text{numpaths}[e] = \text{numpaths}[d] = 0$
- $\text{numpaths}[E] = 1$
- $\text{numpaths}[V] = \sum_{e=(v, x) \in E} \text{numpaths}(x)$

 e.g.

 $\text{numpaths}(c) = \text{numpaths}(t) = 1$

 $\text{numpaths}(b) = \text{numpaths}(c) + \text{numpaths}(t) = 2$

Alg: NumPaths(G, s, t)

1) TopSort(G) (uses DFS + post numbers), let $n(v)$ be their TopSort order
2) Set $\text{numpaths}(v) = 0 \ \forall v \ \text{ s.t. } n(v) > n(t)$
3) Set $\text{numpaths}(t) = 1$
4) For $\text{TopSort}(G) - 1 \to 1$ decreasing
 - Let X have $n(x) = i$
 - Set $\text{numpaths}(x) = \sum_{e=(x, z) \in E} \text{numpaths}(z)$
5) Return $\text{numpaths}(s)$.
Correctness

Claim: G has k paths from s to t iff $\text{NumPaths}(G,s,t)$ returns k.

SubClaim: $\text{NumPaths}(x) = \# \text{ of paths from } x \text{ to } t$.

PF: By induction.

Base: Let $x \neq s,t$ have $n(x)+1 = n(t)$.

- If there's an edge (x,t) then $\text{NumPaths}(x) = 0$.
- For x with $n(x) > n(t)$, $\text{NumPaths}(x) = 0$.

Induction: Assume $\text{NumPaths}(x') = \# \text{ of paths from } x' \text{ to } t$. For $x > n(x) \geq n(t)$.

Show $\text{NumPaths}(k)$ is correct.

- Any way to get to t is through k's neighbors which all have $\text{TopSort}#$, bigger than k. So $\text{NumPaths}(k) = \sum_{(k,j) \in E} k$.

Back to claim:

\Rightarrow: Assume G has k distinct paths from s to t.

Since we'll return $\text{NumPaths}(s)$, k will be returned by subclaim.

\Leftarrow: If NumPaths returns k, then there must be k paths to t from s by subclaim.