Discussion Week 1

Agenda

1) Introductions
2) Big-Oh
3) DFS example
4) Odd Cycle

1) TA: Evan Ettinger
 OH: M 2-4pm Ebu3b B210
 e-mail: ettinger@cs.ucsd.edu
 *Note: please e-mail personal issues only, HW or test questions should go on the blackboard.

2) Big-Oh

- Used to analyze running time and memory usage of an algorithm (time complexity, space complexity)

 E.g., Algorithm takes input of size n
 A: runs in 2^n time
 B: in n^2 time

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>10^0</td>
<td>10^1</td>
<td>10^2</td>
<td>10^3</td>
<td></td>
</tr>
</tbody>
</table>

- Note: $\approx 10^{80}$ atoms in observable universe.

 We say Alg. B is more efficient than A since as n gets large B will always run faster than A.

- Defn: Let $f(n), g(n)$ be functions from positive ints to pos. reals. We say $f = O(g)$ if we can find a constant $C > 0$ s.t. $f(n) \leq Cg(n)$ for all $n > 0$.

 Also, $f = \Omega(g) \iff g = O(f)$ and $f = \Theta(g)$.
DFS example

- Depth First Search is an algorithm that explores the structure of a graph.

Ex: Run DFS on the following graph starting at A and breaking ties alphabetically.

G:

```
A -+ B
  |
  v
C -+ D
    |
    v
E -+ F
    |
    v
H -+ I
  |
  v
J -+ K
```

- Note: x/y means node had pre #x and post #y.

- Here is the corresponding DFS tree of G:

```
  A
  |
  v
B -+ C
  |
  v
D -+ E
  |
  v
F
```

"back edges" "tree edges"
Odd Cycle

Devise an algorithm as follows (linear-time):

Input: Undirected $G=(V,E)$

Output: Does G have an odd cycle? (Yes/No)

- How can we use DFS to solve this?
 - Idea: Undirected G has only tree/back edges and back edges are cycles in G!

Algorithm:

$\text{OddCycle}(G)$

1) Run DFS (G), coloring each child the opposite color of its parent (R, B color)

2) For each back edge $e=(u,v)$ in the DFS tree G
 - if (color(u) == color(v))
 - output "Yes" and halt

3) Output "No"

Run-time analysis: DFS takes $O(|V|+|E|)$, 2) is at most $O(|E|)$

So, OddCycle is $O(|V|+|E|)$.

Correctness Claim: G has an odd cycle in it iff

$\text{OddCycle}(G)$ outputs "Yes",

1) \Rightarrow Assume G has an odd cycle. Let (uv) be the back edge for this cycle in G. Since all the edges in the cycle are tree edges, colors alternate along the cycle causing color(u) == color(v).

2) \Leftarrow Assume $\text{OddCycle}(G)$ outputs "Yes" then a back edge has the same color, so the path from u to v using tree edges is even and one edge (uv) is odd cycle.
Example Is \(f = \Theta(g) \) if \(f = \Omega(g) \) ?

(a) \[
\frac{f}{n^{1/3}} = \frac{g}{n^{2/3}}
\]

- Can we find \(c > 0 \) such that \(n^{1/3} \leq c - n^{2/3} \) \(\forall n > 0 \)?

\[
\frac{n^{1/3}}{n^{2/3}} = n^{-1/3} = \frac{1}{n^{1/3}} \leq 1 \quad \forall \text{an integer } > 0
\]

So \(c = 1 \) shows \(f = \Theta(g) \).

- Can we find \(c > 0 \) such that \(n^{2/3} \leq c - n^{1/3} \)?

\[
\frac{n^{2/3}}{n^{1/3}} = n^{1/3} \nless c \quad \mathbf{\text{no}}
\]

For any \(c \) we choose we can find \(\exists \) \(c_{0} \) such that \(\exists n_{0} \) \(n_{0}^{1/3} > c \).

E.g., \(c = 10 \)

\(n_{0} = 1001 \) will do the trick.

In general, \(n_{0} = \lceil c^{3} \rceil + 1 \) does the trick.

So, \(f \neq \Theta(g) \)

\[
\boxed{f = \Theta(g)}
\]

(b) \[
\frac{f}{\log n}
\]

- \(\log n \equiv c - n^{0.01} \) ?

\[
\frac{\log n}{n^{0.01}} = \frac{\log \frac{1}{n^{0.01}}}{0.01 n^{1.99}} \leq 100 \quad \forall n > 0 \text{ int},
\]

so \(f = \Theta(g) \)

- \(n^{0.1} \geq c \cdot \log n \) ? \(\mathbf{\text{No}} \), for similar reasoning.

Note: In your hw you can use rules 1-7 on pg 8 as justification to your answers.