Automating Cross-Layer Diagnosis of Enterprise 802.11 Wireless Networks

Yu-Chung Cheng
Department of Computer Science & Engineering
University of California, San Diego
Diagnosing distributed systems

- Simple systems
 - Few components
 - Inputs/Output observed
 - Cause of failure usually obvious

- Distributed systems
 - Many interdependent components
 - Hard to monitor all interactions
 - Cause of failure/degradation is non-obvious
The promise of enterprise 802.11

Blanket AP coverage = seamless connectivity
A familiar story...

“The wireless is being flaky.”

“Flaky how?”

“Well, my connections got dropped earlier and now things seem very sloooow.”

“OK, we will take a look”

“Wait, wait … it’s ok now”

“Mmm… well let us know if you have any more problems.”
Our story: new CSE building at UCSD

- 150k square feet
 - 4 floors + basement
 - >500 occupants

- Building-wide WiFi
 - 40 APs (802.11b/g)
 - Channel 1, 6, 11

- Users complain about wireless performance since we moved in July 2005
 - Admins and vendors can not solve the issues
Why is it hard to figure out?

- Problems can be in anywhere
 - Across layers – protocols
 - Even in the same layer – 802.11 {a,b,f,g,h,i,n,s}
 - Software incompatibilities – vendor variations
 - Transient or persistent – time
 - Radio propagates in free space – locations
 - Radio spreads across channels – frequencies
 - Shared spectrum makes it worse
 - APs bridge wireless and wired worlds – infrastructure

- To diagnose
 - Gather data everywhere
 - Analyze across all layers

- Need a system to do this job automatically
Better world

The wireless is being flaky

User

Your SSH has over 200ms response time in average, 8% TCP packet is lost due to the interferences from the microwave oven nearby

This problem is logged for sys admins
Shaman

- **Goal**: Develop a system to automatically diagnose problems in wireless networks
- **Pervasive data collection (Jigsaw)**
 - Extensive passive monitoring system
 - Observe all transmissions across locations, channels, and time
 - Provides a unified synchronized trace of every packet transmission
- **Explicitly model protocols on critical path**
 - DHCP, 802.11 MAC, TCP, etc.
 - Provides complete delay and loss breakdown
 - For every packet transmission, all protocol stages
- **Framework for diagnostic tools**
 - Use model outputs to determine root cause of problems
 - Users can query on demand, also alert admins
Shaman system architecture

Gather and merge traces from monitors into one global trace

Do all in real-time

Trace sync & merging

Protocol modeling

Critical path diagnosis

Infer protocol states

Identify problems on the critical path
Why pervasive monitoring?

- Protocol states are often not directly observable
 - Inferred from packet traces and protocol state machines
 - Packet delay and losses
 - PHY/MAC interactions with each other and the environment

- Capturing **all wireless events** provide the ground truth to model protocol states
 - Require a global perspective = one clock
 - Require high resolution timestamp for 802.11 timing analysis

- How?
Jigsaw passive monitor system

- Overlays existing WiFi network
 - Series of passive monitors
 - Blanket deployment for best coverage

- Monitor
 - PoE box w/ 266Mhz P4 + 128MB ram
 - 2 b/g radios

- 96 monitors (192 radios)
 - Monitors are paired in each location
 - Covering all channels in use
 - Captures all 802.11 activity (including PHY/CRC errors)
 - Stream back to centralized storage
Trace merging (ideal)
Not all monitors see all packets
Trace merging (reality)
Challenge 1: sync at 10us precision

- Why 10us precision?
 - Critical evidence for 802.11 layer analysis

- 802.11 channel access mechanism
 - Carrier-sense multiple access (CSMA)
 - Channel busy → wait
 - Channel idle → send
 - Timing unit is ~10us

- Precise trace timestamps reveal 802.11 internal states
 - Ex1: if A and B send at same time, they could interfere → A can’t hear B
 - Ex2: if A sends right after B’s transmission → A can hear B

- How?
 - Create a global clock
 - Monitors timestamp packets w/ local HW clocks
 - 802.11 HW clocks has 1us granularity
 - Estimate the offset between local and global clock for each monitor
Challenge 2: sync across 192 radios

- **Goal:** estimate the offset between local and global clock for each monitor
 - Time route from one monitor to the other
- **Sync across channels**
 - Ch. 1 monitor does not hear packet sent in ch. 6.
 - Dual radios on same monitor slaved to same clock

Jigsaw: Solving the Puzzle of Enterprise 802.11 Analysis
Cheng, Bellardo, Benko, Snoeren, Voelker, and Savage
SIGCOMM 2006
Trace merging (reality)

Time

Shaman sync’d’d trace

Frame 1
Frame 2
Frame 3
Frame 4
Frame 5

5/13/07
Part of a sync’d’d trace

<table>
<thead>
<tr>
<th>Row</th>
<th>User 1</th>
<th>User 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traces synchronized
Shaman system architecture

- Wireless monitor
- Wireless monitor
- ...
- Wireless monitor
- Wired gateway monitor

Gather and merge traces from monitors into one global trace

Trace sync & merging

Protocol modeling

Critical path diagnosis

Infer protocol states

Identify problems on the critical path
Modeling protocols

- Now we have fully sync’d global traces
 - What protocols must we model?
- Critical path
 - Mobility management
 - Scan/associate w/ AP
 - DHCP
 - ARP
 - Portal page login
 - Data transport protocols
 - TCP
 - 802.11 Mac delay/loss
Mobility Management

- Create the illusion of a single AP
 - Proprietary system w/ site specific policy
- Most components are simple protocols
 - 1-2 request-response transactions
 - Easier to model compared to TCP
 - Very reliable in wired network
 - ARP, DHCP, DNS
 - Seldom suspected as the culprits in wireless
- Users expect seamless connectivity
 - People often suspend/resume laptops while moving in the office building
Mobility overhead in UCSD CSE

Major Problem: (Gratuitous) ARPs & Scans
Protocol Modeling

- Distribution is not enough
 - Want to diagnose any user’s problem by finding the root cause

- Need to track *per packet* delay and loss
 - Essential to model e2e protocols like TCP
 - Complex mechanisms to accommodate delay and loss

- Example:
 slow SSH response →
 high TCP losses →
 most 802.11 retries failed →
 microwave ovens operating nearby
The journey of a packet in 802.11

- Wired packet
- 802.11 Data
- 802.11 Ack
Modeling 802.11 packet delays

- Emulate AP queue
 - Based on input/output events

- Events observed directly
 - Ethernet packet on wires
 - 802.11 data/ack on wireless

- Need to infer when a packet ...
 - Reaches head of TxQ
 - Is scheduled to the TxQ
 - Is received by the AP
Applying 802.11 delays to TCP diagnosis

Scenario

- 3 users downloading same large tar ball through same AP from the CSE website
- 1 user complains about download performance in spite of having 54Mbps 802.11g connectivity

Major performance bottleneck is queue competition
Modeling packet losses

- Delay alone is not enough for diagnosis
- Loss is another major factor
 - 802.11 performs retransmission on loss
 - Loss happens on both ways
 - Data or Ack
 - Must model 802.11 conversations
- Loss causes
 - Attenuation (e.g. not enough signal strength)
 - Interference from other 802.11 devices (hidden-terminals)
 - Interference from other devices in 2.4GHz
Broadband interference

~9 am

12-2 pm
Interference fingerprints
TCP performance measures

- Want to measure TCP performance bottlenecks
 - Compares actual goodput with (modeled) ideal goodput [JP98]

- Major problems in UCSD CSE TCP bulk flows
 - 30% small receiver window
 - 19% AP retry bug
 - 30% AP 802.11b/g compatibility policy (protected mode)

Automating Cross-Layer Diagnosis of Enterprise Wireless Networks
Cheng, Afanasyev, Benko, Verkaik, Snoeren, Voelker, and Savage.
SIGCOMM 2007 (To appear)
Putting everything together

Critical path diagnosis

Scan/Association

DHCP

ARP

TCP

Diagnose

802.11 Delay/Loss

Broadband Interference
System status

- Real-time monitoring and diagnosis of UCSD CSE wireless network
 - 30 seconds delay
- Serving UCSD CSE wireless users
 - Resolved 67 tickets
 - Validated manually
 - Discovered various implementation bugs and protocol problems
 - Only retry once
 - Do not respect CSMA, burst frames in a row
 - Very large transmission duration
 - Overly conservative 802.11g protection policy
 - ...
 - Working w/ vendors and admins to fix AP bugs
- Re-deployed in city 802.11 mesh network in the bay area
Related Work

- WiFiProfiler [Mobisys06]
 - Peer diagnosis among clients
- DAIR [NSDI07]
 - Distributed monitors but application-spec traffic summaries
 - No centralized merging/sync
 - Fine-grained location system
- Wit [SIGCOMM06]
 - Automatic protocol states inference engine
- Airmagnet
 - Troubleshooting user problems (PHY/MAC)
 - Detect interferences, security problems, protocol incompatibilities
 - Special devices to perform active probes
- Airtight/Airdefense/Kismet
 - Detect rogue APs and security problems
Conclusions

- Wireless diagnosis is tough
 - Especially for large enterprise network
 - Need to check a lot of factors
 - Need a system to do the job automatically

- Shaman: an automatic comprehensive wireless diagnosis system
 - Large-scale 24x7 monitoring
 - High resolution synchronization
 - Models protocol states on the critical path
 - Mobility management
 - TCP
 - 802.11 delay and losses
 - Automatically diagnose user problems in real-time
Other work

- Metropolitan-scale Wi-Fi location system
 Cheng, Chawathe, LaMarca, Krumm. *Mobisys 2005*

- Monkey See, Monkey Do: A tool for TCP Tracing and Replaying
 Cheng, Hoezle, Cardwell, Savage, Voelker. *USENIX 2004*

- Fatih: Detecting and Isolating Malicious Routers
 Mizrak, Cheng, Marzullo, Savage. *DSN 2005*

- Total Recall: System Support for Automated Availability Management
 Bhagwan, Tati, Cheng, Savage, Voelker. *NSDI 2003*
Q & A

- Collaborators (since Jan 2005)
 - John Bellardo
 - Mikhail Afanasyev
 - Peter Benko
 - Patrick Verkaik
 - Jennifer Chiang
 - Harrison Duong
 - Alex Snoeren
 - Geoff Voelker
 - Stefan Savage

- Live traffic monitoring
 sysnet.ucsd.edu/wireless/