1. Show that an affine transformation can map a circle to an ellipse, but cannot map an ellipse to a hyperbola or parabola.

2. Consider the Lyapunov map from MaSKS Equation (6.42), p. 195:

\[L : \mathbb{C}^{3 \times 3} \rightarrow \mathbb{C}^{3 \times 3}; \quad X \mapsto X - CXC^T \]

Assume \(C \) has \(n \) independent eigenvectors \(\{u_i \in \mathbb{C}^n\}_{i=1}^n \), with eigenvalues given by \(Cu_i = \lambda_i u_i \).

(a) Show that \(X_{ij} = u_i u_j^* \in \mathbb{C}^{3 \times 3} \) is an eigenvector of \(L \). What is the corresponding eigenvalue?

(b) Assuming \(\det(C) = 1 \), which eigenvectors are in \(SRker(L) \)? In other words, for which values of \(i \) and \(j \) does \(L \) map the symmetric real \(X \) to the zero matrix?

(c) Explain the significance of \(SRker(L) \) if we interpret \(X \) as the coefficient matrix for a conic.

3. 2D Upgrade from Affine to Euclidean via Orthogonal Lines.

(a) Load in the affine-rectified image \(\text{affine_tile.gif} \), identify two pairs of imaged orthogonal lines, and plot them on the raw image.

(b) Implement the algorithm to solve for \(K \in SL(2)/SO(2) \) from two imaged right angles on a plane as described in H&Z Example 2.26 (Metric Rectification I), p. 56.

(c) Demonstrate your code on the tile image. Display the Euclidean-rectified image and plot the transformed line pairs on it.

4. Implement the algorithm described in H&Z Example 8.18 (A Simple Calibration Device), p. 211. Use it to estimate \(K \) from the image \(\text{squares.gif} \) depicting three metric planes. Compare your \(K \) to the \(K \) from H&Z.

5. Derive the solution for the homography \(H \in GL(4) \) relating \(n \geq 5 \) corresponding 3D points \((X^j_1, X^j_2), j = 1, 2, \ldots, n \), in general position.

6. Uncalibrated 3D Reconstruction.

(a) Run the script \(\text{house_views.m} \) to produce two uncalibrated views of a wireframe house.

(b) Recover \(F \) using the 8-pt. algorithm and compute the canonical camera matrices \((\Pi_1p, \Pi_2p) \).

(c) Triangulate to produce the projective structure \(X_p \).

(d) Find the homography \(H \in GL(4) \) to upgrade \(X_p \) directly to the Euclidean structure \(X_e \) using 5 ground truth points.

(e) Solve for the image of the plane at infinity \((v^T, v_4)^T \) from three vanishing points and use it to upgrade \(X_p \) to the affine structure \(X_a \).