Lattices are usually represented by a basis, i.e., a set of linearly independent vectors \(b_1, \ldots, b_k \) that generate the lattice. In this assignment we consider alternative representations, and algorithms to convert between them.

1 Working with a triangular basis

In the problem 2 you will show (among other things) that every full rank integer lattice has a lower triangular basis. Triangular bases are very convenient to work with, as shown in this first problem.

Give a polynomial time algorithm that on input a full rank lower triangular basis \(B \in \mathbb{Z}^{n \times n} \) and a vector \(t \in \mathbb{Z}^n \), returns a lower triangular basis \(B' \) for the lattice generated by all integer linear combinations of \(B \) and \(t \).

(Hint: first give an algorithm that on input \((B, t)\), returns a new pair \((B', t')\) such that the first coordinate of \(t \) is zero. Use the determinant of the lattice to make sure all numbers involved do not get too big.)

2 Linear dependencies

Consider a set of (linearly dependent) integer vectors \(b_1, \ldots, b_k \in \mathbb{Z}^n \) (for \(k > n \)), and assume for simplicity that they span the entire space \(\mathbb{R}^n \). Show that the set of their integer linear combinations

\[
L(b_1, \ldots, b_k) = \{ \sum_i b_i x_i : \forall i. x_i \in \mathbb{Z} \}
\]

is a lattice, by giving a polynomial time algorithm that on input \(b_1, \ldots, b_k \), returns a basis for the lattice they generate. (Hint: Find a sublattice of the form \(d \cdot \mathbb{Z}^n \), and then add the \(b_i \) vectors to it, one at a time, using the result proved in problem 1.)

3 Systems of equations

Consider a system of \(k \) equations in \(n \) variables

\[
(i = 1, \ldots, k) \sum_{j=1}^{n} a_{i,j} x_j = 0 \pmod{m_i}
\]

where all \(a_{i,j} \) and \(m_i \) are integers. Show that the set of integer solutions to the system is a lattice, by giving a polynomial time algorithm that on input the coefficients \(a_{i,j} \) and moduli \(m_i \), returns a lattice basis. (Hint: consider the dual of the lattice generated by the (linearly dependent) vectors \(\frac{1}{m_i}(a_{i,1}, \ldots, a_{i,n})^T \) and \((0, \ldots, 0, 1, 0, \ldots, 0)^T\).)