level zero

has two sons

has none
Given \(A, B, C, D \), Code into binary sequences.
1100010

C A B

A B D C

0 1 0 1
Given a set of letters, how to code optimally?
Intuitively, we use short sequences to represent commonly used letters, and long sequences to represent rarely used letters like Q and Z.

\[
\begin{array}{cccc}
A & B & C & D \\
40\% & 30\% & 20\% & 10\%
\end{array}
\]
Huffman’s Problem

Given a set of nodes with weight \(w_j \),

find a binary tree with

\[
\sum_i w_i l_i \text{ minimized,}
\]

where \(l_j \) is the level of the node in the tree.
\[\sum_{i} w_i l_i = 19 \]
\[
\sum_{i} w_i l_i = 25
\]
A different way to calculate $\sum_i w_i l_i$.

The weight of a father = the weight of his two sons.

The sum of $n - 1$ fathers = $\sum_i w_i l_i$.
Necessary condition for optimality.

Never give a large w_i a lower level and a small w_j a higher level.
Give the two smallest weights the same father.

\[w_1 < w_2 < \cdots < w_n \]

Given \(w_1 \) and \(w_2 \) have the same father.