There are many ways to separate two nodes i and j, e.g. a node by itself

There exists at least one MIN CUT separating any two nodes.
The MIN CUT separating any two nodes e and h does not cross the MIN CUT separating any two nodes i and j.
Flow equivalent network
Once we find $F(i, j) = c[X, X']$ where $i \in X, j \in X'$.

When can we condense X as a single node? X' as a single node?
Given n-node network, find $F(j, i) = C[j, j]$.

For all nodes $g \in X', \ h \in X$, $F(g, h) \leq C[j, i]$
\[F(j, e) = 5, F(i, h) = 4, F(j, g) = 5 \]

\[F(e, i) = 2, F(e, h) = 2, F(g, h) = 2, F(j, h) = 2 \]
Now, to find $F(i, h)$ where i, h both in X, we can condense $X' = \{e, g, j\}$ into a single node.

So we do MAX FLOW on a 3-node network.