Motion I

Introduction to Computer Vision
CSE 152
Lecture 17
Announcements

• Assignment 3: Due today at midnight. Hardcopy due date extended to 12 noon tomorrow.

• Today
 – Review of Photometric Stereo
 – Discrete Structure from Motion
 – Continuous motion
Now if BRDF and light source direction/strength are known, then for each image point

1. Image intensity is a function of only the direction of the surface normal.

2. In gradient space, we have $E(x,y) = R(p,q)$ where E is measured, (p,q) is unknown, but form of function $R(p,q)$ is known.
Coordinate system

Normal vector
\[\mathbf{n} = \frac{\partial s}{\partial x} \times \frac{\partial s}{\partial y} = \left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1 \right) \]

Gradient Space: (p,q)
\[p = \frac{\partial z}{\partial x}, \quad q = \frac{\partial z}{\partial y} \]
Two Light Sources
Two reflectance maps

Third image would disambiguate match
Plastic Baby Doll: Normal Field
Recovering the surface $z(x,y)$

Many methods: Simplest approach

1. From estimate $n = (n_x, n_y, n_z)$, $p=n_x/n_z$, $q=n_y/n_z$
2. Integrate $p=\frac{dz}{dx}$ along a row $(x,0)$ to get $z(x,0)$
3. Then integrate $q=\frac{dz}{dy}$ along each column starting with value of first row to get $z(x,y)$
Integrability

If \(f(x,y) \) is the height function, we expect that

\[
\frac{\partial}{\partial y} \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} \frac{\partial z}{\partial y}
\]

In terms of estimated gradient space \((p,q)\), this means:

\[
\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}
\]

But since \(p \) and \(q \) were estimated independently at each point as intersection of curves on three reflectance maps, equality is not going to exactly hold.
At image location \((u,v)\), the intensity of a pixel \(x(u,v)\) is:

\[
e(u,v) = [a(u,v) \hat{n}(u,v)] \cdot [s_0 \hat{s}]
\]

\[
= b(u,v) \cdot s
\]

where

- \(a(u,v)\) is the albedo of the surface projecting to \((u,v)\).
- \(\hat{n}(u,v)\) is the direction of the surface normal.
- \(s_0\) is the light source intensity.
- \(s\) is the direction to the light source.
Important Special Case: Lambertian Photometric Stereo

- If the light sources s_1, s_2, and s_3 are known, then we can recover b from as few as three images. (Photometric Stereo: Silver 80, Woodham 81).

\[
\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} = b^T \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix}
\]

- i.e., we measure e_1, e_2, and e_3 and we know s_1, s_2, and s_3. We can then solve for b by solving a linear system.

\[
b^T = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix}^{-1}
\]

- Normal is: $n = b/|b|$, albedo is: $|b|$
Bas-Relief Ambiguity

Light Sources (s_1, s_2, s_3) are unknown
III. Photometric Stereo with unknown lighting and Lambertian surfaces
How do you construct subspace?

\[
\begin{bmatrix}
e_1 & e_2 & e_3
\end{bmatrix} = B^T \begin{bmatrix}
s_1 & s_2 & s_3
\end{bmatrix}
\]

- Given three or more images \(e_1 \ldots e_n\), estimate \(B\) and \(s_i\).
- How? Given images in form of \(E = [e_1 \ e_2 \ldots]\), Compute SVD(\(E\)) and \(B^*\) is \(n\) by 3 matrix formed by first 3 singular values.
Matrix Decompositions

• Definition: The factorization of a matrix M into two or more matrices M_1, M_2, \ldots, M_n, such that $M = M_1 M_2 \ldots M_n$.

• Many decompositions exist…
 – QR Decomposition
 – LU Decomposition
 – LDU Decomposition
 – Etc.
Singular Value Decomposition

Excellent ref: ‘Matrix Computations,” Golub, Van Loan

- Any m by n matrix A may be factored such that
 \[A = U \Sigma V^T \]
 \[[m \times n] = [m \times m][m \times n][n \times n] \]

- U: m by m, orthogonal matrix
 - Columns of U are the eigenvectors of AA^T

- V: n by n, orthogonal matrix,
 - columns are the eigenvectors of A^TA

- Σ: m by n, diagonal with non-negative entries ($\sigma_1, \sigma_2, \ldots, \sigma_s$) with $s=\min(m,n)$ are called the singular values
 - Singular values are the square roots of eigenvalues of both AA^T and A^TA

- Result of SVD algorithm: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_s$
Applying SVD to Photometric stereo

• The images are formed by
\[
\begin{bmatrix}
e_1 & e_2 & e_3 & \ldots & e_n
\end{bmatrix} = \mathbf{B}^T \begin{bmatrix}
s_1 & s_2 & s_3 & \ldots & s_n
\end{bmatrix}
\]
E = \mathbf{B}^T \mathbf{S}

• So, svd(E) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T where \mathbf{U} is N by n, \mathbf{\Sigma} is n by n, and \mathbf{V}^T is n by N.

• Without noise, we expect 3 non-zero singular values, and so \(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{U'} \mathbf{\Sigma'} \mathbf{V'}^T \)
where \(\mathbf{U'} \) is N by 3, \(\mathbf{\Sigma'} \) is 3 by 3, and \(\mathbf{V'}^T \) is 3 by n.

• In particular \(\mathbf{B} = \mathbf{U'} \mathbf{A} \) where \(\mathbf{A} \) is some 3x3 matrix.
Do Ambiguities Exist? Yes

• Is B unique?

• For any \(A \in \text{GL}(3), \ B^* = BA \) also a solution

• For any image of \(B \) produced with light source \(S \), the same image can be produced by lighting \(B^* \) with \(S^* = A^{-1}S \) because

\[
X = B^*S^* = B AA^{-1}S = BS
\]

• When we estimate B using SVD, the rows are NOT generally normal * albedo.
Surface Integrability

In general, B^* does not have a corresponding surface.

Linear transformations of the surface normals in general do not produce an integrable normal field.
GBR Transformation

Only **Generalized Bas-Relief** transformations satisfy the integrability constraint:

\[
A = G^T = \begin{bmatrix}
\lambda & 0 & -\mu \\
0 & \lambda & -\nu \\
0 & 0 & 1
\end{bmatrix}^T
\]

\[
\bar{f}(x, y) = \lambda f(x, y) + \mu x + \nu y
\]
Generalized Bas-Relief Transformations

Objects differing by a GBR have the same illumination cone.

Without knowledge of light source location, one can only recover surfaces up to GBR transformations.
Uncalibrated photometric stereo

1. Take n images as input, perform SVD to compute B^*.

2. Find some A such that B^*A is close to integrable.

3. Integrate resulting gradient field to obtain height function $f^*(x,y)$.

Comments:

– $f^*(x,y)$ differs from $f(x,y)$ by a GBR.
– Can use specularities to resolve GBR for non-Lambertian surface.
Structure-from-Motion (SFM)

Goal: Take as input two or more images or video w/o any information on camera position/motion, and estimate camera position and 3-D structure of scene.

Two Approaches
1. Discrete motion (wide baseline)
 1. Orthographic (affine) vs. Perspective
 2. Two view vs. Multi-view
 3. Calibrated vs. Uncalibrated
2. Continuous (Infinitesimal) motion
Discrete Motion: Some Counting

Consider M images of N points, how many unknowns?

1. Affix coordinate system to location of first camera location: $(M-1)*6$ Unknowns
2. 3-D Structure: $3*N$ Unknowns
3. Can only recover structure and motion up to scale. Why?

Total number of unknowns: $(M-1)*6+3*N-1$

Total number of measurements: $2*M*N$

Solution is possible when $(M-1)*6+3*N-1 \leq 2*M*N$
Epipolar Constraint: Calibrated Case

\[\overrightarrow{O_p} \cdot [\overrightarrow{OO'} \times \overrightarrow{O'p'}] = 0 \]
\[\mathbf{p} \cdot [\mathbf{t} \times (\mathcal{R}\mathbf{p'})] = 0 \]

where

\[\mathbf{p} = (u, v, 1)^T \]
\[\mathbf{p'} = (u', v', 1)^T \]
\[\mathcal{M} = (\mathbf{I} \quad \mathbf{0}) \]
\[\mathcal{M}' = (\mathcal{R}^T, -\mathcal{R}^T\mathbf{t}) \]

Essential Matrix
(Longuet-Higgins, 1981)

\[\mathbf{p}^T\mathcal{E}\mathbf{p'} = 0 \]
with
\[\mathcal{E} = [\mathbf{t}_x]\mathcal{R} \]

where
\[[\mathbf{t}_x] = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \]
The Eight-Point Algorithm (Longuet-Higgins, 1981)

Let F denote the Essential Matrix. Here

$$
\begin{pmatrix}
(u, v, 1) \\
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{pmatrix}
\begin{pmatrix}
u' \\
\end{pmatrix}
= 0
$$

Set F_{33} to 1

$$
\begin{pmatrix}
u' \\
v
\end{pmatrix}
= 0
$$

Solve for F

Solve for R and t
Sketch of Two View SFM Algorithm

Input: Two images
1. Detect feature points
2. Find 8 matching feature points (easier said than done)
3. Compute the Essential Matrix E using Normalized 8-point Algorithm
4. Computer R and T (recall that E=RS where S is skew symmetric matrix)
5. Perform stereo matching using recovered epipolar geometry expressed via E.
6. Reconstruct 3-D geometry of corresponding points.
Feature points

Select strongest features (e.g. 1000/image)
Finding Corners

Intuition:

• Right at corner, gradient is ill defined.

• Near corner, gradient has two different values.
Detecting Feature points
(e.g. Harris & Stephens' 88; Shi & Tomasi' 94)

Find points that differ as much as possible from all neighboring points

$$SSD \approx \Delta^T M \Delta$$

$$M = \int \int_W \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial I}{\partial x} & \frac{\partial I}{\partial y} \end{bmatrix} w(x, y) dx dy$$

M should have large eigenvalues

Feature = local maxima of $F(\lambda_1, \lambda_2)$
Feature matching

Evaluate normalized cross correlation (or sum of squared differences) for all features with similar coordinates

\[(x', y') \in [x - \frac{w}{10}, x + \frac{w}{10}] \times [y - \frac{h}{10}, y + \frac{h}{10}] \]

Keep mutual best matches

Still many wrong matches!
Comments

- **Greedy Algorithm:**
 - Given feature in one image, find best match in second image irrespective of other matches.
 - OK for small motions, little rotation, small search window

- **Otherwise**
 - Must compare descriptor over rotation
 - Can’t consider $O(n^8)$ potential pairings (way too many), so
 - Manual correspondence (e.g., façade, photogrametry).
 - use random sampling (RANSAC)
 - More descriptive features (line segments, larger regions, color).
 - Use video sequence to track, but perform SFM w/ first and last image.
Continuous Motion

- Consider a video camera moving continuously along a trajectory (rotating & translating).
- How do points in the image move?
- What does that tell us about the 3-D motion & scene structure?
Motion

Some problems of motion

1. Correspondence: Where have elements of the image moved between image frames
2. Reconstruction: Given correspondence, what is 3-D geometry of scene
3. Segmentation: What are regions of image corresponding to different moving objects
4. Tracking: Where have objects moved in the image? related to correspondence and segmentation.

Variations:

– Small motion (video),
– Wide-baseline (multi-view)
Motion

“When objects move at equal speed, those more remote seem to move more slowly.”
- Euclid, 300 BC
Simplest Idea for video processing
Image Differences

- Given image $I(u,v,t)$ and $I(u,v, t+\delta t)$, compute $I(u,v, t+\delta t) - I(u,v,t)$.

- This is partial derivative: $\frac{\partial I}{\partial t}$

- At object boundaries, $|\frac{\partial I}{\partial t}|$ is large and is a cue for segmentation

- Doesn’t tell which way stuff is moving
Background Subtraction

• Gather image $I(x,y,t_0)$ of background without objects of interest (perhaps computed over average over many images).

• At time t, pixels where $|I(x,y,t)-I(x,y,t_0)| > \tau$ are labeled as coming from foreground objects.
The Motion Field
Where in the image did a point move?

Down and left
The Motion Field
What causes a motion field?

1. Camera moves (translates, rotates)
2. Object’s in scene move rigidly
3. Objects articulate (pliers, humans, animals)
4. Objects bend and deform (fish)
5. Blowing smoke, clouds