I. Given a three-input Boolean function \(f(a, b, c) = \sum m(0, 2, 4, 6, 7) + \sum d(1) \).
 a. Implement the function using a minimal network of 2:4 decoders and OR gates.
 b. Implement the function using a minimal network of 4:1 multiplexers.
 c. Implement the function using a minimal network of 2:1 multiplexers.

II. Adders: Draw the logic diagram to show the following designs.
 II.(1). Design a full adder with a minimal number of 2:1 multiplexers (no other gates). Draw the schematic diagram.
 II.(2). A sequential three-at-a-time adder inputs \(a_i, b_i, e_i \), the \(i \)'th bit of three binary numbers in each clock cycle for \(i = 0 \) to \(n - 1 \) and outputs the sum. Implement the adder with a minimal numbers of Half Adders, OR gates and two D flip-flops.
 III. A sequential adder inputs \(a_i, b_i \), the \(i \)'th bit of two binary numbers in each clock cycle for \(i = 0 \) to \(n - 1 \) and outputs the sum. Implement the adder with a JK flip-flop, and a minimal AND-OR-NOT network (if the network is needed). Draw the schematic diagram.

IV. Given modulo-16 counters, draw the logic diagram to show the following designs.
 IV(1). Design a module-200 counter with a repeated output.
 IV(2). Design a counter with a repeated output sequence 15, 0, 1, 2, 8, 9, 10, 6, 7, with a modulo-16 counter and a minimal combinational network. Write the Boolean expression and draw the schematic diagram.

V. Design a counter with a repeated output sequence 0, 1, 2, 4, 5, 6, 3, with a modulo-8 counter and a minimal AND-OR-NOT network. Write the Boolean expression and draw the schematic diagram.

VI. System Designs:
 Implement the following algorithm:
 Alg(X, Y, Z, start, U, done);
 Input X[7:0], Y[7:0], Z[7:0], start;
 Output U[7:0], done;
 Local-object A[7:0], B[7:0], C[7:0];
 S1: If start' goto S1;
 S2: done<= 0 || A<= X || B<= Y || C<= Z;
 S3: A<= Add(A,B);
 S4: If B'[7] goto S3 || B<= Inc(B);
 S5: If C'[7] goto S3 || C<= Inc(C);
 S6: U<= A || done<= 1 || goto S1;
 End Alg
 VI(1). Design a data subsystem that is adequate to execute the algorithm. Draw the schematic diagram to show the design.
 VI(2). Design the control subsystem (i) draw the state diagram; (ii) draw the logic diagram that implements the control subsystem with a one hot encoding design.