1. Determine \(L = \{a^nb^m : n/m \text{ is an integer} \} \) whether regular or not?

We claim \(L\) is not regular and we prove this by contradiction.

For contradiction assumption, let's assume \(L = \{a^nb^m : n/m \text{ is an integer} \}\) is a regular language. Since \(L\) is regular it should satisfy the pumping lemma. Assume \(L\) is regular, then by pumping lemma there exist a finite state machine \(D\) with \(p\) states that recognizes the language \(L\).

There exist a number \(p\) (pumping length) by pumping lemma.

Let \(s = a^pb^p \in L\) be a string that \(|s| > p\) and is eligible for pumping lemma. By pumping lemma, \(\exists x, y, z\) such that:

1. \(s = xyz\)
2. \(|xy| \leq p\)
3. \(|y| > 0\)

\(x = a^j; j > 0 \leftarrow x \) can be zero or more of the \(a\)'s.

\(y = a^k; k > 1 \leftarrow y \) has to be at least one of the \(a\)'s.

\(z = a^{p-(j+k)}b^p \leftarrow z\) will be the rest of \(a\)'s and \(b\)'s.

By pumping lemma \(xyz \in L\)

Let \(i = 0\) and pump down \(y\): \(i = 0 \Rightarrow a^j(a^k)a^{p-(j+k)}b^p = a^ja^k\)

\[
\frac{p-k}{p} = 1 - \left(\frac{k}{p} \right) \Rightarrow 0 < 1 - \left(\frac{k}{p} \right) < 1 \Rightarrow \frac{p-k}{p} \text{ is not integer therefore } a^ja^k \not\in L.
\]

(pumping lemma) \(k \geq 1\)

Therefore, the assumption is false and no such machine \(D\) exists that recognizes language \(L\).

\(\therefore L\) is not regular.
2. Determine \(L = \{ a^n b^m : n > 25, m \leq 25 \} \) is regular or not?

We want to prove that \(L \) is regular. We do it by introducing a DFA that recognize it and showing that all strings \(\forall w \) recognized by DFA must be in \(L \).

[Diagram of a DFA with states and transitions for accepting \(a \) and \(b \).]

First, we show that \(\forall w \in L \) the DFA recognize it. Here since it is not clear in the question we assume \(0 \leq m \leq 25 \) means that \(m \) can be zero.

In the first \(q_{a1} \) to \(q_{a25} \) states we receive \(a \) and if in any of the first states of \(q_{a1} - q_{a25} \) there is \(b \) in input we go to dead state. All the dead states are actually one single dead state that for a clear diagram we duplicate it. In the last, \(q_{a25} \) we wait for more \(a \) or on \(b \) we go to \(q_{b1} \), \(q_{f1} \) to \(q_{f25} \) also accept \(b \) and all of them are accepting states in addition to \(q_{a25} \) (because \(m \) could be \(m = 0 \)). After \(q_{b25} \), if we receive more \(a \) or \(b \) we reject. This shows that \(\forall w \in L \) the DFA recognize it.

Second, we show \(\forall w \) recognized in \(a^* \) it must be in \(L \).

\(\forall w \) which is recognized by DFA has reached \(q_{a25} \) so it has at least 25 \(a \) or more in the beginning of the string and no \(b \) in the first 25 states is accepted. Therefore the string begin with \(a^n \), \(n > 25 \).
iso, \(\forall w \text{ recognized by DFA \ could \ reach \ any \ of \ the \ state \ } q_6 \text{ to } q_{25} \) after \(q_{25} \) and still be accepted by DFA. Therefore, \(w \) could have \(b^m \); \(b \leq m \), \(b \)'s after the first 25 or more a's. If \(w \) has more than 25 b or any a in the middle of b's it is immediately rejected.

Consequently, all \(w \) recognized by DFA and can reach accept states can only be in the form of \(w = a^n b^m \); \(n \geq 25 \); \(m \leq 25 \) and therefore they are in \(L \) and others are rejected. DFA only recognizes all strings in \(L \) and no others.

Since there exist a DFA to recognize \(L \) and DFA only recognizes all strings in \(L \) & no others, \(L \) is regular. \(\checkmark \)