Useful References 1

- Cormen, Leiserson, Rivest & Stein
- T.C. Hu and M.T. Shing
 Enlarged Second Edition, Dover paperback
- Cook, Cunningham, Pulleyblank, Schrijver
- Korte & Vygen
- Kleinberg & Tardos
Useful References 2

- Graphs, Networks & Algorithms
 by Dieter Jungnickel

- Combinatorial Optimization
 by Alexander Schrijver
 Vol A, B, C
 Pages 1 – 1882
Node A and Node B are neighbors

A is not a neighbor of B
B is a neighbor of A
Graph Algorithms

- BFS
- DFS
- Shortest Path (Dijkstra)
- Minimum Spanning Tree (Prim)
- Shortest Paths (Floyd & Warshall)
BFS

0. Label a vertex $V_0 = 0$.
 Initialize $I = \{1\}$.

1. Let $I = \{1, 2, \ldots, k\}$.
 Let x be a neighbor of the smallest index vertex.

2. Label x with $k + 1$.
 Return to Step 1.
DFS

0. Same

1. Smallest ← largest

2. Same
0. Vertex V_0 is initialized with label
 \[l_0^* = 0. \]
 For all other vertices V_i:
 \[l_i = d_{0,i} \quad \text{if } V_i \text{ is a neighbor of } V_0 \]
 \[l_i = \infty \quad \text{otherwise} \]

1. Pick $l_k = \min_i l_i$, then update
 \[l_k \leftarrow l_k^*. \]

2. Relax vertex k’s neighbors:
 \[l_i \leftarrow \min[l_i, l_k^* + d_{k,i}]. \]
Minimum Spanning Tree (Prim)

0. Same

1. Same

2. $l_i \leftarrow \min[l_i, d_{k,i}]$.

In general

$$l_i \leftarrow \min[l_i, \alpha l_k^* + \beta d_{k,i}]$$
Shortest Paths From 0 To All
Minimum Spanning Tree
Minimum Clock Tree