0. Label the starting vertex V_0 as 0.

1. Let $\{1, \ldots, k\}$ be the set of assigned labels.

2. Find the vertex with the smallest label such that it has an unlabeled neighbor. Label the neighbor $k + 1$.

0. Label the starting vertex V_0 as 0.

1. Let \{1, \ldots, k\} be the set of assigned labels.

2. Find the vertex with the *largest* label such that it has an unlabeled neighbor. Label the neighbor $k + 1$.
Given a directed graph $G = (V, E)$ where there is a length d_{ij} on each arc (directed edge) from vertex i to vertex j, the assumptions are:

1. $d_{ij} > 0$ for all i, j
2. $d_{ij} \neq d_{ji}$ for some i, j
3. $d_{ij} + d_{jk} \leq d_{ij}$ for all i, j, k
Properties of paths:

1. The length of a path is at least the length of its subpaths:
 \[|\text{Path}| \geq |\text{Subpath}|. \]

2. Given a shortest path between two vertices, any subpath is also a shortest path.

3. Let \(P_k \) be the number of arcs (directed edges) from the starting vertex \(V_0 \) to its \(k^{\text{th}} \) nearest vertex. Then \(P_k \) is at most \(k \).
Dijkstra’s Algorithm 3

The algorithm:

0. Vertex V_0 is initialized with label $l_0^* = 0$.
 For all other vertices V_i:
 \[l_i = d_{0,i} \quad \text{if } V_i \text{ is a neighbor of } V_0 \]
 \[l_i = \infty \quad \text{otherwise} \]

1. Pick $l_k = \min_i l_i$, then update $l_k \leftarrow l_k^*$.

2. Relax vertex k’s neighbors:
 \[l_i \leftarrow \min[l_i, l_k^* + d_{k,i}] \].