Announcements

- Assignment 4: Due date extended
 - Electronic submission: Sunday, June 11, 6:00 PM.
 - Hardcopy: Monday, June 12, 6:00 PM
- Read: Trucco & Verri, Chapter 10 on recognition
- Final Exam: Thursday, 6/15, 8:00AM

Recognition

Given a database of objects and an image determine what, if any of the objects are present in the image.

Recognition Challenges

- Within-class variability
 - Different objects within the class have different shapes or different material characteristics
 - Deformable
 - Articulated
 - Compositional
- Pose variability:
 - 2-D Image transformation (translation, rotation, scale)
 - 3-D Pose Variability (perspective, orthographic projection)
- Lighting
 - Direction (multiple sources & type)
 - Color
 - Shadows
- Occlusion – partial
- Clutter in background -> false positives

A Rough Recognition Spectrum

Appearance-Based Recognition (Eigenface, Fisherface) – Local Features + Spatial Relations
Shape Contexts – Aspect Graphs
Geometric Invariants – 3-D Model-Based Recognition
Image Abstractions/Volumetric Primitives – Function
Increasing Generality

Sketch of a Pattern Recognition Architecture

Image (window) – Feature Extraction
Feature Vector – Classification
Object Identity
Example: Face Detection
- Scan window over image.
- Classify window as either:
 - Face
 - Non-face

Sketch of a Pattern Recognition Architecture

Image as a Feature Vector
- Consider an n-pixel image (window) to be a point in an n-dimensional space, \(x \in \mathbb{R}^n \).
- Each pixel value is a coordinate of \(x \).

Simplest Recognition Scheme
- \(R \) is an image.
- \(c(R, I) \) is Euclidean distance.

Dimensionality Reduction: Linear Projection
- An n-pixel image \(x \in \mathbb{R}^n \) can be projected to a low-dimensional feature space \(y \in \mathbb{R}^m \) by
 \[y = Wx \]
 where \(W \) is an \(m \) by \(n \) matrix.
- Recognition is performed using nearest neighbor in \(\mathbb{R}^m \).
- How do we choose a good \(W \)?
Eigenfaces: Principal Component Analysis (PCA)

Assume we have a set of n feature vectors x_i ($i = 1, \ldots, n$) in \mathbb{R}^d. Write

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T$$

The unit eigenvectors of Σ — which we write as v_1, v_2, \ldots, v_k, where the order is given by the size of the eigenvalue and v_1 has the largest eigenvalue — give a set of features with the following properties:

- They are independent.
- Projection onto the basis $\{v_1, \ldots, v_k\}$ gives the k-dimensional set of linear features that preserves the most variance.

Algorithm 22.5: Principal component analysis identifies a collection of linear features that are independent, and capture as much variance as possible from a dataset.

Some details: Use Singular value decomposition, “trick” described in appendix of text to compute basis when $n<<d$.

Eigenfaces

- **Modeling**
 1. Given a collection of n labeled training images,
 2. Compute mean image and covariance matrix.
 3. Compute k Eigenvectors (note that these are images) of covariance matrix corresponding to k largest Eigenvalues. (Or perform using SVD!!)
 4. Project the training images to the k-dimensional Eigenspace.

- **Recognition**
 1. Given a test image, project to Eigenspace.
 2. Perform classification to the projected training images.

And important footnote: Don’t really implement PCA this way!

Why?
1. How big is Σ?
 - n by n where n is the number of pixels in an image!!
2. You only need the first k Eigenvectors
3. [However HW 4, the images are small enough that the direct Eigenspace approach will work.]
Singular Value Decomposition

- **Any** $m \times n$ matrix A may be factored such that $A = U \Sigma V^T$
 - U: $m \times m$, orthogonal matrix
 - Columns of U are the eigenvectors of AA^T
 - V: $n \times n$, orthogonal matrix
 - Columns are the eigenvectors of A^TA
 - Σ: $m \times n$, diagonal with non-negative entries ($\sigma_1, \sigma_2, \ldots, \sigma_s$) with $s = \min(m,n)$ are called the singular values
 - Singular values are the square roots of eigenvalues of both A^TA and AA^T.

- **Result of SVD algorithm:** $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_s$

Performing PCA with SVD

- **Singular values of A are the square roots of eigenvalues of both AA^T and A^TA**
 - U and V are corresponding eigenvectors

- **Covariance matrix is:**
 $$\Sigma = \frac{1}{n} \sum_{i=1}^{n} (\vec{x}_i - \vec{\mu})(\vec{x}_i - \vec{\mu})^T$$

- **So ignoring $1/n$, subtract the mean image μ from each input image, create the data matrix A, and perform (thin) SVD on the data matrix.**

Thin SVD

- **Any** $m \times n$ matrix A may be factored such that $A = U \Sigma V^T$
 - U: $m \times m$, orthogonal matrix
 - Columns of U are the eigenvectors of AA^T
 - V: $n \times n$, orthogonal matrix
 - Columns are the eigenvectors of A^TA

- **In Matlab, thin SVD is:** $[U \ S \ V] = svds(A)$

Fisherfaces: Class specific linear projection

- **An n-pixel image $x \in \mathbb{R}^n$ can be projected to a low-dimensional feature space $y \in \mathbb{R}^m$ by**
 $$y = Wx$$

 - Where W is an $n \times m$ matrix.
 - Recognition is performed using nearest neighbor in \mathbb{R}^m.
 - How do we choose a good W?

SVD Properties

- In Matlab $[U \ S \ V] = svd(A)$, and you can verify that $A = U^S V^T$.
 - $r = \text{rank}(A) = \# \text{ of non-zero singular values}$.
 - U, V give us orthonormal bases for the subspaces of A:
 - $1 \times r$ columns of U: Column space of A
 - $1 \times (m-r)$ columns of U: Left nullspace of A
 - $1 \times r$ columns of V: Row space of A
 - $1 \times (n-r)$ columns of V: Nullspace of A
 - For $d \leq r$, the first d column of U provide the best d-dimensional basis for columns of A in least squares sense.

Alternative projections
PCA & Fisher’s Linear Discriminant

- Between-class scatter
 \[S_W = \sum_{i=1}^{c} |x_i - \mu_i| (x_i - \mu_i)^T \]
- Within-class scatter
 \[S_B = \sum_{i=1}^{c} n_i (x_i - \mu_i) (x_i - \mu_i)^T \]
- Total scatter
 \[S_T = S_W + S_B \]

Where
- \(c \) is the number of classes
- \(\mu_i \) is the mean of class \(\chi_i \)
- \(|x_i| \) is number of samples of \(\chi_i \).

- If the data points are projected by \(y = Wx \) and scatter of points \(x_i \) is \(S \), then the scatter of the projected points \(y_i \) is \(WSW \).

- If \(S_W \) is rank \(N-c \), project training set to subspace spanned by first \(N-c \) principal components of the training set.
- Apply FLD to \(N-c \) dimensional subspace yielding \(c-1 \) dimensional feature space.

- Fisher’s Linear Discriminant projects away the within-class variation (lighting, expressions) found in training set.
- Fisher’s Linear Discriminant preserves the separability of the classes.

Fisherfaces

\[W = W_{FLD}W_{PCA} \]
\[W_{FLD} = \arg \max_{W} \frac{W^T S_B W}{W^T S_W W} \]
\[W_{PCA} = \arg \max_{W} W^T S_W W \]

\[W_{FLD} = \arg \max_{W} \frac{W^T W_{PCA} S_B W_{PCA} W}{W^T W_{PCA} S_W W_{PCA} W} \]

- PCA (Eigenfaces)
 \[W_{FLD} = \arg \max_{W} \frac{W^T S_B W}{W^T S_W W} \]

Maximizes ratio of projected between-class to projected within-class scatter

PCA vs. FLD

- PCA (Eigenfaces) maximizes projected total scatter
- Fisher’s Linear Discriminant maximizes ratio of projected between-class to projected within-class scatter

Using Matlab:
- The \(w_i \) are orthonormal
- There are at most \(c-1 \) non-zero generalized Eigenvalues, so \(m \leq c-1 \)
- Can be computed with \(\text{eig} \) function in Matlab

Computing the Fisher Projection Matrix

\[W_{FLD} = \arg \max_{W} \frac{W^T S_B W}{W^T S_W W} \]

where \(\{w_i \mid i = 1, 2, \ldots, m\} \) is the set of generalized eigenvectors of \(S_B \) and \(S_W \) corresponding to the \(m \) largest generalized eigenvalues \(\{\lambda_i \mid i = 1, 2, \ldots, m\} \), i.e.,

\[S_B w_i = \lambda_i S_W w_i, \quad i = 1, 2, \ldots, m \]
Harvard Face Database

- 10 individuals
- 66 images per person
- Train on 6 images at 15°
- Test on remaining images

Recognition Results: Lighting Extrapolation

Appearance manifold approach

- For every object
 1. Sample the set of viewing conditions
 2. Crop & scale images to standard size
 3. Use as feature vector
- Apply a PCA over all the images
- Keep the dominant PCs
- Set of views for one object is represented as a manifold in the projected space
- Recognition: What is nearest manifold for a given test image?

Variability:
- Camera position
- Illumination
- Internal parameters
- Within-class variations

An example: input images

An example: basis images
An example: surfaces of first 3 coefficients

Parameterized Eigenspace

Recognition

Appearance-based vision for robot control

[Nayar, Nene, Murase 1994]

Limitations of these approaches

- Object must be segmented from background (How would one do this in non-trivial situations?)
- Occlusion?
- The variability (dimension) in images is large, so is sampling feasible?
- How can one generalize to classes of objects?

Appearance-Based Vision: Lessons

Strengths

- Posing the recognition metric in the image space rather than a derived representation is more powerful than expected.
- Modeling objects from many images is not unreasonable given hardware developments.
- The data (images) may provide a better representations than abstractions for many tasks.
Appearance-Based Vision: Lessons

Weaknesses

• Segmentation or object detection is still an issue.
• To train the method, objects have to be observed under a wide range of conditions (e.g. pose, lighting, shape deformation).
• Limited power to extrapolate or generalize (abstract) to novel conditions.

Final Exam

• Closed book
• One cheat sheet
 – Single piece of paper, handwritten, no photocopying, no physical cut & paste.
• What to study
 – Basically material presented in class, and supporting material from text
 – If it was in text, but NEVER mentioned in class, it is very unlikely to be on the exam
• Question style:
 – Short answer
 – Some longer problems to be worked out.

Further Studies

• CSE166: Image Processing
• AI (CSE150,151)
• CSE159: Projects in Computer Vision