Introduction to Loopy Belief Propagation
Belief Propagation

What is BP?

Belief Propagation is a dynamic programming approach to answering conditional probability queries in a graphical model.

Given some subset of the graph as evidence nodes (observed variables E), compute conditional probabilities on the rest of the graph (hidden variables X).

BP gives exact marginals when the graph is a tree (ie. has no loops), but only approximates the true marginals in loopy graphs.
Belief Propagation

- **Idea**: BP works by peer-pressure: a node X determines a final belief distribution by listening to its neighbors.
- Evidence enters the network at the observed nodes and propagates throughout the network.
- Adjacent nodes exchange messages telling each other how to update *beliefs*, based on priors, conditional probabilities and evidence.
- We keep passing messages around until a stable belief state is reached (if ever).
Define $\lambda_Y(x)$ as the message to X from a child node Y, indicating Y’s opinion of how likely it is that $X = x$.

If X is observed ($X \in E$), allow a message to itself: $\lambda_X(x)$.

Define $\pi_X(u)$ as the message to X from its parent U, used to reweight the distribution of X given that $U = u$.

Keep passing messages around until the beliefs converge. We allow messages to change over time: $\lambda^{(t)}(x)$ is a message at time t.

Belief is the normalized product of all incoming messages after convergence:

$$BEL_X(x) = \alpha \lambda(x) \pi(x) \approx \Pr[X = x | E]$$
Belief Propagation

Message Passing Example (Incoming)

At step t:

$$
\lambda_{Y_k}^{(t)}(x), \pi_X^{(t)}(u_k)
$$
Belief Propagation

Message Passing Example (Outgoing)

At step $t + 1$:

Messages:

$\lambda_{Y_k}^{(t)}(x)$, $\pi_{X}^{(t)}(u_k)$, $\lambda_{X}^{(t+1)}(u_i)$, $\pi_{Y_j}^{(t+1)}(x)$
Belief Propagation

Initial Conditions

- If X has no parents, initialize with the prior:
 \[\pi(x) = \Pr[X = x]. \]

- If X is an observed node with value e,
 \[\lambda(x) = \begin{cases} 1 & x = e \\ 0 & \text{otherwise} \end{cases} \]

- If X is not observed and has no children, $\lambda^{(0)}(x) = 1$.

- We start sending messages from observed nodes, and instantiate messages for hidden variables along the way.
Belief Propagation

Building Messages

- For a node X with parents $U = \{U_1, \ldots, U_n\}$ and children $Y = \{Y_1, \ldots, Y_m\}$:

- Incoming messages to node X at time t:

 \[
 \lambda^{(t)}(x) = \lambda_X(x) \prod_j \lambda_{Y_j}^{(t)}(x)
 \]

 \[
 \pi^{(t)}(x) = \sum_u \Pr[X = x | U = u] \prod_k \pi_X^{(t)}(u_k)
 \]

- Outgoing messages from node X at time $t + 1$:

 \[
 \lambda_X^{(t+1)}(u_i) = \alpha \sum_x \lambda^{(t)}(x) \sum_{u \setminus u_i} \Pr[X = x | U = u] \prod_{k \neq i} \pi_X^{(t)}(u_k)
 \]

 \[
 \pi_{Y_j}^{(t+1)}(x) = \alpha \pi^{(t)}(x) \lambda_X(x) \prod_{k \neq j} \lambda_{Y_k}^{(t)}(x)
 \]
Belief Propagation in the cloudy/rainy/sprinkler/wet grass network. We observe that the grass is wet $W = 1$ and calculate a posterior distribution.
Loopy BP

- BP may not give exact results on loopy graphs, but we use it anyway: iterate until convergence.
- The marginals are often good approximations to the true marginals found by the junction tree algorithm.
- If BP does not converge, it may oscillate between belief states.