CSE 105—Theory of Computability

Lecture 8—April 27, 2006
Pushdown Automata

Instructor: Neil Rhodes
What is a pushdown automata?

A Finite-state automata augmented with a stack

Stack:
- Holds stack symbols (stack alphabet distinct from input alphabet)
- Can pop symbol from the stack
 - popping empty stack causes this computation to not accept
 - Can only retrieve topmost symbol
- Can push a stack symbol
 - Always goes on top
- No way to explicitly test whether stack is empty
 - But we’ve got a trick to be able to tell!

State diagram
- labels become: a, b→c
 - means
 - reading a from input
 - and top of stack is b
 - pop b
 - push c
Example

Language = \{0^n1^n | n \geq 0\}
Example

Language = \{w \in \{0, 1\}^* | w \text{ has equal numbers of 0's and 1's}\}
Example

Language = \{w#w^R| w \in \{0, 1\}^*\}
Example

Language = \{ww^R \mid w \in \{0, 1\}^*\}
Example

Language = w not a palindrome (over \{0, 1\})
Example

Language: \(L\{xy \mid x \neq y, x, y \in \{0, 1\}* \} \)
CFG can be converted to NPDA

Easiest to use Chomsky Normal Form
- Book uses any grammar without conversion; idea is the same

Let’s look at leftmost derivation with CNF
- Example grammar
 - S→TT | RT
 - T→0 | TT | 1
 - R→0 | RR

- Example string
 - 01101
CFG can be converted to NPDA

Without Chomsky Normal Form

- Can have arbitrary mix of terminals and non-terminals in sentential form
- Store everything except leading terminals on stack
- Match input symbols to stack terminal symbols
- Example:
 - S→0T1 ∣ 1
 - T→T0 ∣ ε
- Example string:
 - 0001
CFG equivalent to PDA

Still need to show can convert PDA to CFG
 - Believe me:) (In book, if you desire)