Regular Expressions

Instructor: Neil Rhodes
Concatenating two regular sets

A string from the first set followed by a string from the second set

- Idea: guess where the first string ends

- Example: L = binary strings divisible by 4, M = every 0 immediately followed by 2 1s
Regular Expressions

Recognize the same sets as DFA and NFA.
- Equivalent

What is a regular expression?
- Used for pattern matching
 - grep
 - perl
 - etc.
- \((abc)^* (d|e)fgh\)
 - Matches any number of repeated abc, followed by either d, or e, then followed by fgh
- Three operations:
 - Concatenation: regular expressions appear next to each other
 - Union: The | specifies a choice among alternative regular expressions
 - Kleene star: represents 0 or more repetitions of a regular expression

- Recursive definition:
 - \(RE =\)
 - symbol from alphabet
 - \(\epsilon\)
 - \(\emptyset\)
 - \(RE_1RE_2\)
 - \((RE_1^*)\)
 - \((RE_1 | RE_2)\)
Examples

Binary strings divisible by 4

Binary strings with each 0 immediately followed by two 1s

Binary strings with each 0 immediately preceded by two 1s

Binary string divisible by 4 followed by string with an even number of 0s

Strings of length 0

Strings over \{a, b, c\} of length 5

Empty set
Relationship between RE and FSA

Any RE can be converted to an equivalent NFA

- Recursive construction
 - For a symbol:
 - For concatenation:
 - For union:
 - For Kleene star:
Example

Convert \((ab|b^*)^*c\) to a FSA
Converting NFA to RE

First, convert to Generalized NFA (GNFA).

Then convert GNFA with k states to one with k-1 states
- k-1 to k-2
- ...
- 3 to 2

Then, convert GNFA with 2 states to regular expression

What is GNFA
- NFA with:
 - transitions labeled with regular expressions
 - start state
 - no arrows in
 - arrows out to every other state
 - single accept state
 - no arrows out
 - arrow in from every other state
 - other states
 - Single arrow between every pair of states (except start, accept)
Converting NFA to GNFA

Add new start state
- \(\varepsilon \) transition to old start state
- appropriate transitions to other states

Add new final state
- \(\varepsilon \) transitions from old final states
- appropriate transitions to other states

Add new transitions
- \(\emptyset \) transitions where no transitions exist (other than from new accept or to new start)

Example
Converting GNFA_k to GNFA_{k-1}

Pick a state d to rip out of the GNFA_k
- not start or final state

Patch up all other pairs of states
- If label from i to j was RE_{ij} new label is $(\text{RE}_{ij} \mid \text{RE}_{id}(\text{RE}_{dd}^*)\text{RE}_{dj})$

Example:
Example converting RE to FSA

Want RE for binary strings not divisible by 3