Lecture 18—June 1, 2006
Reducibility

Instructor: Neil Rhodes
Show that the following language is undecidable:

- $T = \{<M>| M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$

Step one: decide on undecidable language to reduce to T
- $\leq_M T$

Step two: Decide on two languages for a new TM, M' to accept:
- $(<M>,w) \in \rightarrow M' \in T$. So, if M accepts w, M' accepts L_1, where L_1 contains w^R

 whenever it contains w. Let $L_1 = \{\}$
- $(<M>,w) \notin \rightarrow M' \notin T$. So, if M doesn’t accept W, M' accepts L_2, where L_2 contains some string whose reverse is not in L_2. Let $L_2 = \{\}$

Step three: write the description for the TM M' that takes input w'
- step a) If $w' = \rightarrow$, accept
- step b) If $w' = \rightarrow$, run M on w. If it accepts, accept
- step c) Otherwise, reject

Step four: describe the mapping function f:
- f will, given M and w, create the TM M' as described above

Step five: summary
- We’ve reduced T to T because:
 - If $(<M>,w) \in , f(<M>,w) = M'$, and M' accepts $L_1 = \{$, so $<M'> \in T$
 - If $(<M>,w) \notin , f(<M>,w) = M'$, and M' accepts $L_2 = \{$, so $<M'> \notin T$
Consider the problem of determining whether a two-tape Turing machine ever writes a nonblank symbol on its second tape when it is run on input \(w \). Formulate this problem as a language and show that it is undecidable.

- \(L = \{<M, w>| M \text{ is a TM that}\} \)
- Reduce what to \(L \)?
- What will \(M' \) do?
Decidability example

Consider the problem of determining whether a two-tape Turing machine ever writes a nonblank symbol on its second tape when it is run on any input. Formulate this problem as a language and show that it is undecidable.

- L = \{ <M> | M is a TM that \}
- Reduce what to L?
- What will M’ do?
Decidability example

Consider the problem of determining whether a single-tape Turing machine ever writes a blank symbol over a nonblank symbol during the course of its computation on any input string. Formulate this problem as a language and show that it is undecidable.

- \(L = \{<M>| \text{M is a TM that}\} \}
- Reduce what to \(L\)?
- What will \(M'\) do?
Decidability example

Consider the problem of determining whether a single-tape Turing machine on any input ever attempts to move its head left when its head is on the left-most tape cell. Formulate this problem as a language and show that it is undecidable.

- $L = \{<M> | M \text{ is a TM that} \}$
- Reduce what to L?
- What will M' do?
Decidability example

Consider the problem of determining whether a single-tape Turing machine on any input ever writes a blank on the left-most tape cell. Formulate this problem as a language and show that it is undecidable.

- \(L = \{<M>| M \text{ is a TM that} \} \)
- Reduce what to \(L \)?
- What will \(M' \) do?
Decidability example

A *useless state* is a state that is never entered on any input string.

Consider the problem of determining whether a single-tape Turing machine has any useless states. Formulate this problem as a language and show that it is undecidable.

- \(L = \{ <M> | \text{M is a TM that} \} \)
- Reduce what to \(L \)?
- What will \(M' \) do?
Decidability example

Consider the problem of determining whether a single-tape Turing machine on any input halts leaving the tape with the contents “011111”. Formulate this problem as a language and show that it is undecidable.

- $L = \{<M>| M \text{ is a TM that } \}$
- Reduce what to L?
- What will M' do?
Decidability example

Consider the problem of determining whether a single-tape Turing machine on input \(w \) enters all the states of the machine. Formulate this problem as a language and show that it is undecidable.

- \(L = \{<M>| M \text{ is a TM that} \} \)

Reduce what to \(L \)?

What will \(M' \) do?
Decidability example

Consider the problem of determining whether a single-tape Turing machine on input \(w \) ever moves the tape head right then immediately left then immediately right then immediately left. Formulate this problem as a language and show that it is undecidable.

- \(L = \{<M, w>| M \text{ is a TM that} \} \)
- Reduce what to \(L \)?
- What will \(M' \) do?
Reducing \(\cap_{\text{CFG}} \) to \(\text{ALL}_{\text{CFG}} \)

\(\text{ALL}_{\text{CFG}} = \{ G | \text{G is a CFG and } L(G) = \Sigma^* \} \)

- Create \(G' = (G_1 \cap G_2)^c \)
- Check whether \(G' \in \text{ALL}_{\text{CFG}} \). If yes, \(G_1 \) and \(G_2 \) don’t intersect. If no, they do intersect.

- Is this valid? Is \(G_1 \cap G_2 \) a CFG? Is the complement of a CFL a CFL?
 - No

- However, look at \(\text{PCP} \leq \cap_{\text{CFG}} \leq \text{ALL}_{\text{CFG}} \)
 - The grammars used in the reduction of PCP were deterministic!

 - So, actually, the reduction is:

\[G' = G_1^c \cup G_2^c = (G_1 \cap G_2)^c \]

- \(G_1^c \) is DCFG
- Union is CFG