Reducibility

Lecture 17—May 30, 2006
Reducibility

Instructor: Neil Rhodes
Mapping Reduction

We say that a language \(A \) is *mapping-reducible* to \(B \) \((A \leq_M B)\) if:

- There exists a computable function \(f \) that maps \(\Sigma^* \) to \(\Sigma^* \) with:
 - \(w \in A \) iff \(f(w) \in B \)

We say that a function \(f : \Sigma^* \rightarrow \Sigma^* \) is *computable* if:

- There exists a Turing machine \(M \) which, on every input \(w \), halts with \(f(w) \) on its tape
What can be shown with a reduction

$A \leq B$

- If B has a TM, one can construct a TM for A

- If B is decidable, one can construct a TM that decides A
Mapping-reducible examples

$$\text{EMPTY}_{TM} \leq_M \text{EQ}_{TM}$$

$$\text{PCP} \leq_M \cap_{CFG}$$

$$\text{PCP} \leq_M \text{AMBIG}_{CFG}$$

$$\text{ALL}_{CFG} \leq_M \text{EQ}_{CFG/REG}$$

$$\text{EQ}_{CFG/REG} \leq_M \text{EQ}_{CFG}$$

$$A_{TM} \leq_T \text{REGULAR}_{TM}$$

$$A_{TM} \leq_T \text{CF}_{TM}$$
Not mapping-reducible

$A_{TM} \leq_{M} \text{EMPTY}_{TM}$
Turing reduction

We define an *oracle Turing machine* M^L as a Turing machine with an *oracle* for a language L. An oracle machine can write a string onto a special oracle tape, and then get back an answer as to whether that string is in L.

- We say that A is *Turing-reducible* to B ($A \leq_T B$) if there exists an oracle machine (with oracle for B) that recognizes A.
Examples of Turing reductions

$A_{TM} \leq_{M} \text{EMPTY}_{TM}$

$\cap_{CFG} \leq_{T} \text{ALL}_{CFG}$
Differences between Turing- and mapping- reductions

Number of times membership question can be asked
- Mapping reduction uses membership in B exactly once
- Turing reduction can make multiple calls to oracle

When membership question can be asked
- Mapping reduction can only ask at the end of computation
- Turing reduction can do computation after querying oracle

Membership in language A versus membership in language B
- Mapping reduction maps yes-to-yes and no-to-no
- Turing reduction can invert mapping, or do other computation

Easy to simulate mapping reduction with Turing reduction but not vice-versa
- Turing reductions are stronger than mapping reductions. Sometimes we don’t use them because of their strength (Turing reductions could take more time, for example).
Reducing \cap_{CFG} to ALL_{CFG}

$\text{ALL}_{\text{CFG}} = \{ G | G \text{ is a CFG and } L(G) = \Sigma^* \}$

- Create $G' = (G_1 \cap G_2)^c$
- Check whether $G' \in \text{ALL}_{\text{CFG}}$. If yes, G_1 and G_2 don’t intersect. If no, they do intersect.

- Is this valid? Is $G_1 \cap G_2$ a CFG? Is the complement of a CFL a CFL?
 - No

- However, look at $\text{PCP} \leq \cap_{\text{CFG}} \leq \text{ALL}_{\text{CFG}}$
 - The grammars used in the reduction of PCP were deterministic!

 - So, actually, the reduction is:

 $G' = G_1^c \cup G_2^c = (G_1 \cap G_2)^c$
 - G_1^c is DCFG
 - Union is CFG