Lecture 15—May 23, 2006
Undecidability
Reductions

Instructor: Neil Rhodes
A language that isn’t recursively enumerable

Encode Turing machines as integers
- Any integer describing an invalid Turing machine we’ll interpret as a TM that halts and rejects
- TM_i = Turing Machine described by integer i

Make table
- Columns are ith binary string
- Rows are jth Turing machine
- Each entry (i, j) is:
 - 1 if TM_j accepts input i
 - 0 if TM_j doesn’t accept input i

L_D = opposite of (i, i) for each i
- Diagonalization language not recognized by *any* TM

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM_8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Universal Turing Machine language A_{TM} is undecidable

$A_{TM} = \{(M, w) | M \text{ is a TM and } M \text{ accepts } w\}$

Assume recursive (decidable)

- Therefore, A_{TM}^C is recursive
- There exists machine M which decides A_{TM}^C
Reductions

We have an algorithm that converts instances of problem P_1 to instances of problem P_2 with the same answer

- We have reduced P_1 to P_2
- P_2 is at least as hard as P_1
 - Because if we have an algorithm for P_2, we have an algorithm for P_1

Start with a known hard problem P_1 for which no machine exists

- Like, does M on w accept?

Assume there’s a TM, M_2, that answers some other question P_2

- Does M accept the empty language?

Show a way to create a Turing Machine, M_1 that decides P_1:

- Takes the inputs for P_1.
- Converts them into inputs for M_2.
- Takes the answer from M_2 and computes answer for P_1
- But, since M_1 can’t exist, M_2 can’t exist either.
Reducing M accepts W to halting problem

Halting problem:
- Given M on w, does M halt (accept or reject)?
- $\text{HALT}_{TM} = \{(M, w) | M \text{ is a TM and } M \text{ halts on input } w\}$

Assume there exists machine M_{Halt} that solves the halting problem

Create M'
- Given M and w,
- Call M_{Halt} on M with w
 - If rejects, reject
 - If accepts, simulate M on w and when it halts, accept or reject appropriately

M' decides $A_{TM} = \{(M, w) | M \text{ is a TM and } M \text{ accepts input } w\}$
- But this is undecidable!
- So, M_{Halt} doesn’t exist
- Therefore, Halting problem is undecidable
EMPTY_{TM} = \{ M \mid M \text{ is a TM and } M \text{ accepts the empty language} \}

Is EMPTY_{TM} decidable?

Is EMPTY_{TM}^c recursively enumerable?
$\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } M \text{ accepts a regular language} \}$

Is $\text{REGULAR}_{\text{TM}}$ decidable?
$\text{CF}_{\text{TM}}=\{M \mid M \text{ is a TM and } M \text{ accepts a context-free language}\}$

Is CF_{TM} decidable?
\[\text{EQ}_{TM} = \{(M_1, M_2) \mid M_1, M_2 \text{ are TM and } M_1, M_2 \text{ accept the same language}\} \]

Is \(\text{EQ}_{TM} \) decidable?
Rice’s Theorem

Any problem that takes a turing machine as input and asks any non-trivial question about the language it accepts is undecidable.

- Trivial question:
 - Satisfied by all recursively enumerable languages
 - Satisfied by no languages

- Questions about the *machine* are decidable
 - How many states?
 - Ever move tape head to the left?
Linear Bounded Automaton

Turing machines that can’t read/write outside the input

- $A_{LBA} = \{(M, w) | M \text{ is an LBA such that } M(w) \text{ accepts}\}$
- A_{LBA} is decidable
Linear-Bounded Automaton

E_{LBA} is undecidable

- If decidable, here’s algorithm for A_{TM}
Does a CFG G generate all strings?

$\text{ALL}_{\text{CFG}} = \{ G \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$

- Given M and w, construct G such that
 - G accepts all strings except accepting computation history for M on w