Binary Search Trees

Binary tree in which, for any node x:
- Keys in the left subtree are $< x$’s key
- Keys in the right subtree are $> x$’s key

Operations:
- Min
- Max
- Predecessor(x)
- Successor(x)
- Insert(x)
- Delete(x)
- Search(key)

If the height is h, all operations can run in $O(h)$
- Worst-case height?
- Best-case height?
- How to guarantee best case?
- Average-case? Expected $O(\log n)$ for a random sequence of Inserts

Balanced Search Trees

Guarantee height is $O(\log n)$
- So that each operation is $O(\log n)$

Many different possibilities
- Red-Black trees, B-Trees (covered in CLRS)
- AVL trees
 - height of subtrees at a node differs by at most 1
- 2-3 trees
 - Nodes can have 2 or 3 children; all leaves at the same level
- B-Trees
 - Generalization of 2-3 trees
- Splay trees
 - Move inserted/searched nodes to the top of the tree, double-rotating along the way. Amortized cost $O(\log n)$ per operation
- Binomial heap
 - Forest of trees with 2^i nodes. Merging/priority queue.
- Fibonacci heaps
 - Merging/priority queue. Amortized $O(1)$ for Insert/Min/Union/DecreaseKey. Amortized $O(\log n)$ for Delete/DeleteMin
Red-Black Trees

Binary search tree guaranteed to be approximately balanced

- The maximum leaf depth is ≤ 2 minimum leaf depth
- Every node is colored red or black
- Root is black
- Leaf nodes are NIL (and black) (we won’t show these nodes)
- If a node is red, its children are black
- Paths from any node to its leaf descendants have the same number of black nodes (black-height)

Height of Red-Black Tree is $O(\log n)$

Black subtree: ignoring red nodes

- Ignore them by having parents of red nodes adopt their grandchildren
- Each black node can have 2, 3, or 4 children
- Every leaf has the same depth, k
- # black nodes $\geq 2^{k-1}$

Now, don’t ignore red nodes

- # black and red nodes $= n \geq 2^{k-1}$
 - $\lg n \geq \lg(2^{k-1} - 1) \geq \lg(2^k - 1)$; so, $k < \lg n$
 - Longest path $\leq 2k$ (longest by alternating red & black)
 - Longest path $\leq 2\lg n$

Inserting into a Red-Black Tree

Insert as new red leaf in correct spot

- May create red/red parent/child conflict
- Work up the tree, either removing the conflict, or raising it higher in the tree
 - Max number nodes processed $= O(\log n)$
- If the root is red, make it black

Working up the tree

Case 1: Uncle is red
Recolor three nodes; keep working

Case 2: red child is bent
Rotate red child with parent
Continue to case 3

Case 3: Uncle black red child straight
Rotate and recolor parent and grandparent. Done!

Try an example

- Insert 1, .., 8 into an empty Red-Black tree
- Work in pairs
- Save results at the end of inserting each key
Red-Black Trees

Other operations
- Search
 - Same as any other BST
- Successor
 - Like any other BST: if node has right subtree, find its MIN
 - Else, return closest biggest ancestor
- Delete
 - Complicated re-balancing: still $O(\log n)$, though

Augmenting Search Trees
Chapter 14

Augmenting Search Trees

Basic idea:
- Want to maintain extra information about data
- Imagine we can calculate the data for a node based only on that node and its children
 - In a parse tree, such data is called a synthesized attribute, passing data up the parse tree
 - We can maintain the data without affecting run-time (other than by a constant factor).
 - Only information we need to update is from the modified node up the path to the root
- Examples
 - Min/Max node in sub-tree
 - Size of sub-tree
 - Depth of sub-tree
- Counter-examples
 - Order statistic (rank)
 - Median
 - Average?

Augmenting RB-Tree to calculate Rank in $O(\log n)$

Augment RB-Tree with size of x (# nodes in subtree rooted at x)
- Clearly, this is a synthesized attribute (can be calculated at any node based only on left and right child)
- To calculate rank of x, add:
 1 + nodes in left-subtree
 + # of left ancestors + # nodes in their left subtrees (retrieve from left ancestors)
Interval Trees

Interval \([a, b] = \{ x \in \mathbb{R} \mid a \leq x \leq b \}\)
- Closed interval (we could define with open if desired)
- Interval tree is search tree with:
 - Key = left-hand endpoint of interval
 - Additional data = right-hand endpoint of interval
 - Synthesized attribute = maximum endpoint of subtree

Search(interval)
- Given an interval \(i\), return an overlapping interval (\(i\) overlaps \(j\) if \(\exists p\in i\) and \(p\in j\)) in the tree

Recursive Algorithm
- Search(root, \([x,y]\))
 - if root = nil then return nil
 - if \([x, y]\) overlaps \([\text{root}_l, \text{root}_r]\) then return root
 - if \(y < \text{root}_l\) then
 - entirely left of root: can't be in right sub-tree
 - return Search(root_left-child, \([x, y]\))
 - assert(\(x > \text{root}_r\))
 - does overlap in left sub-tree
 - doesn't overlap; not less than
 - if \(x > \text{left-child(root)}_{\text{max-right}}\) then
 - can't be in left sub-tree
 - return Search(right-child(root), \([x, y]\))
 - else /* \(x > \text{left-child(root)}_{\text{max-right}}\) does overlap in left sub-tree */
 - return Search(left-child(root), \([x, y]\))