Binary Search specification

Write a binary search algorithm in pseudo-code. Provide formal proof of its correctness. Provide formal proof of its running time.

Given:

function BinarySearch(A[1..n], key)

Pre-condition:

- A is a sorted array indexed from 1 to n.
- key is an element to be searched for

Post-condition:

- If key is an element of the array, then returns i, where A[i] = key
- If key is not an element of the array, returns "no".

BINARYSEARCH(A[1..n], key)
1 i ← 1
2 j ← n
3 loop
4 precondition: if key is in original list, key is in A[i..j]
5 exit when j ≤ i
6 mid = \left\lfloor \frac{i + j}{2} \right\rfloor
7 if key < A[mid]
8 then
9 j ← mid - 1
10 else
11 i = mid
12 end loop
13 if i = j & key = A[i]
14 then
15 return i;
16 else
17 return "no";
Necessary proofs

Precondition & code_{preloop} → LoopInvariant

If key is in $A[1..n]$, key is in $A[1..n]$ (by substitution of equals)

LoopInvariant & ExitCondition & code_{postloop} → postcondition

Because of the exit condition ($j \leq i$), there are two cases:

- $j < i$

 By LoopInvariant, if key is in the original list key is in empty list but by the definition of empty list, key is not in it. $code_{postloop}$ returns "no" in this case, satisfying postcondition.

- $j = i$

 By LoopInvariant, if key is in original array, key is in $A[i..j]$. By substitution, if key is in original array, key is in $A[i..i]$. $code_{postloop}$ returns i in this case, which satisfies the postcondition. If key is not in the array, then $key \neq A[i]$ and the code returns "no";

LoopInvariant' & not(ExitCondition) & code_{loop} → LoopInvariant"

LoopInvariant': if key is in original list, key is in $A[i..j]$.
not(ExitCondition): not $(j \leq i) \rightarrow i < j$

Since $i < j$, $\left\lceil \frac{i + j}{2} \right\rceil \leq j$ (because $\left\lceil \frac{i + j}{2} \right\rceil = j$). Similarly, $\left\lfloor \frac{i + j}{2} \right\rfloor > i$

If the key is in $A[i..j]$, then key must be in either $A[i..mid - 1]$, or $A[mid, j]$.
Case 1: If key is in original list, key is in $A[i..mid - 1]$
In this case, $key < A[mid]$ (because A is sorted).

Code is of form

- $i'' \leftarrow i'$
- $j'' \leftarrow mid - 1$

Thus, if key is in original list, key is in $A[i'', j'']$.

Case 2: If key is in original list, key is in $A[mid..j]$
In this case, $key \geq A[mid]$ (because A is sorted). Code is of the form:

- $i'' \leftarrow mid$
- $j'' \leftarrow j'$

Thus, if key is in original list, key is in $A[i'', j'']$
Loop terminates

Every time through the loop, \(j'' - i'' < j' - i' \), and \(i \) and \(j \) are integers. The loop terminates if \(j = i \).