Greedy Algorithms

A special case of dynamic programming
- Where the number of subproblems to consider is 1
- Where the choice to be made can be determined independent of the subproblems
- Still uses concept of optimal subproblems
- A series of locally optimal choices lead to a globally optimal solution
- Only works for certain problems

Greedy Algorithm proofs

Simplest—Show following two properties
- Greedy choice
 - There exists an optimal algorithm that makes the greedy choice
- Optimal substructure
 - Show any optimal solution exhibits optimal substructure
 - Show greedy algorithm makes first choice consistent with an optimal solution and remainder of problem exhibits optimal substructure

Lower Bound
- Show a lower bound for any solution
- Show greedy algorithm meets that lower bound

Relationship between Dynamic Programming and Greedy

Interval scheduling
- Set S of jobs. Job \(A_j \) starts at \(s_j \) and finishes at \(f_j \)
- Goal: Find maximum subset of non-overlapping jobs.
Interval scheduling

Dynamic programming
- Define S_{ij} as the set of jobs which start at fi and finish at sj (compatible with i and j). $S_{0,n+1}=S$
- $OPT(i, j)$ is the optimal solution for the set S_{ij} (sorted by finish order).
- $OPT(i, j) =$
 - 0 if $i \geq j$
 - $\max_{k \in S_{ij}} (OPT(i, k) + OPT(k, j) + 1)$
- Note two subproblems
Note that the optimal solution for S_{ij} includes the job with earliest finish time, A_m
- Look at an optimal scheduling S^* of S_{ij}, and look at the job A_k in that optimal scheduling with the earliest finish time. Replace A_k with the job with the strictly earliest finish time from S_{ij}. It is compatible with all the other jobs in S^* ($f_m \preceq f_i$)

Simplified Dynamic programming
- $OPT(i, j)$ is the optimal solution for the set S_{ij} (sorted by finish order)
- $OPT(i, j) =$
 - 0 if $i \geq j$
 - $OPT(f_{i+1}, j) + 1$
- Now only one subproblem and choice is forced!
Even simpler
- $OPT(i)$ is the optimal solution for the set $S_{i,n+1}$
- $OPT(i) =$
 - 0 if $i \geq n+1$
 - $OPT(f_{i+1}) + 1$

Interval scheduling

Iterative Algorithm:
- Sort jobs by finish time so that $f_1 \preceq f_2 \preceq \ldots \preceq f_n$
- Solution = {} for $i = 1$ to n
 - if job i doesn’t overlap with jobs in Solution
 - Solution = Solution U {job i}
return Solution

Runtime
- $O(n \log n)$ for sorting
- $O(n)$ for loop
- $O(n \log n)$ overall

Selecting Breakpoints

Selecting breakpoints.
- Road trip from La Jolla to Berkeley along fixed route.
- Refueling stations, s_i, at certain points along the way.
- Fuel capacity = C.
- Goal: makes as few refueling stops as possible.

Greedy algorithm. Go as far as you can before refueling.
Selecting Breakpoints

Optimal substructure
- Given an optimal solution with breakpoints $b_1...b_k$, create a subproblem $S' = S - \text{stations } s_1,...,s_{b_1}$ from the original problem.
- $b_2,...,b_k$ must be an optimal solution to S'

Greedy-choice property
- There exists an optimal solution where the first breakpoint is at the maximum station s_C.

Since the selecting breakpoints problem has these two properties, the greedy algorithm for choosing breakpoints produces an optimal solution.

Interval Partitioning

Interval partitioning.
- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Scheduling

Greedy algorithm
- Go through lectures (in order of start time)
- If an empty lecture hall is available, schedule the lecture
- If not, create a new lecture hall

In detail
- Sort lectures by start time
 numClassrooms = 0
 for $j = 1$ to n
 if lecture j is compatible with some classroom k
 schedule lecture j in classroom k
 else
 numClassrooms++
 schedule lecture j in classroom numClassrooms

Interval Scheduling proof of correctness

Lower bound on optimal algorithm is depth of input
- Depth = maximum number of simultaneous lectures

Greedy algorithm uses depth classrooms
- Classroom d is opened because there are $d-1$ other lectures going on already when we want to schedule job j.
- These $d-1$ other lectures started no later than s_j.
- At time $s_j + \epsilon$, there are d lectures going on.
- Any optimal algorithm will need d classrooms.
Matroids

A matroid is an ordered pair \(M = (S, I) \) satisfying

- \(S \) is a finite set
- \(I \) is the independent subsets of \(S \).
 - \(I \) is nonempty
 - Any subset of an element of \(I \) is in \(I \) (hereditary)
 - Note that \(\emptyset \) is in \(I \)
- \(M \) satisfies the exchange property
 - For two elements, \(A, B \), of \(I \) where \(|A| < |B| \), there exists an element \(x \) in \(B-A \) such that \(A \cup \{x\} \) is in \(I \)

Example matroid: graphic matroid

- Given \(G = (V, E) \)
 - \(S = E \)
 - A set of edges is independent iff they don’t form a cycle in \(G \)
 - Clearly, hereditary
 - \(M_g = (S_g, I_g) \) satisfies the exchange property
 - Two forests \(A, B \), \(|A| < |B| \). \(B \) has fewer trees. There exists one tree in \(B \) corresponding to two trees in \(A \)....

Weighted Matroids

Greedy algorithm for weighted matroids

- \(A = \{\} \)
 - Sort \(S \) in decreasing order
 - foreach \(x \) in \(S \)
 - if \(A \cup \{x\} \) is in \(I \) then
 - \(A = A \cup \{x\} \)

Greedy-choice property

- Let \(A = (x) \), the highest weight element such that \(\{x\} \) is independent.
- Use exchange property to add elements from \(B \), an optimal subset.

Optimal substructure property

- Choose \((x) \) from \(S \). Consider \(M' = (S', I') \), the contraction of \(M \) by \(x \):
 - \(S' \) = set of \(y \) such that \((x, y) \) are in \(S \)
 - \(I' \) = set of \(B \) in \(S' - x \) such that \(B \cup \{x\} \) is in \(I' \)
- If \(A \) (containing \(x \)) is optimal MIS of \(M \), then \(A - (x) \) is optimal MIS of \(M' \)
- If \(A' \) is optimal MIS of \(M' \), then \(A \cup \{x\} \) is optimal MIS of \(M \)

Task-scheduling: \(n \) unit-time tasks \(a_1, a_n \), \(n \) deadlines \(d_1, d_n \), \(n \) profits, \(w_1, w_n \)

- Determine ordering of tasks that maximizes total profits for met deadlines
- Let \(A = \) maximum independent set of tasks that can all be completed on time.
- Algorithm
 - Sort \(a_1, a_n \) by decreasing profit
 - \(A = \{\} \)
 - for \(i = 1 \) to \(n \)
 - if \(A \cup \{a_i\} \) can be completed by deadlines
 - \(A = A \cup \{a_i\} \)
 - result = elements of \(A \) sorted by deadline time followed by remaining elements of \(a_1, a_n \) in any order