Shape-from-X, Stereo Vision I

Introduction to Computer Vision
CSE 152
Lecture 12

What to do with edges?

• Group unlinked or unrelated edges into line (or curves in general), Hough.

• Segment linked edge chains into curve features (e.g., line segments).

• Accurately fitting parametric curves (e.g., lines) to grouped edge points.

Line Fitting

Problem: minimize

\[E = \sum_{i=1}^{n} (ax_i + by_i - d)^2 \]

with respect to \((a, b, d)\).

1. Minimize \(E\) with respect to \(d\):

\[d = \frac{1}{n} \sum_{i=1}^{n} ax_i + by_i \]

2. Substitute \(d\) back into \(E\):

\[E = \sum_{i=1}^{n} (ax_i + by_i - \frac{1}{n} \sum_{i=1}^{n} ax_i + by_i)^2 \]

where \(n = (a, b)^T\).

3. Minimize \(E = n^TUn = n^TSn\) with respect to \(a, b\) subject to constraint \(n^Tn = 1\).

\[S = \hat{u}^T \hat{u} = \begin{pmatrix} \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 & \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} \\ \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} & \sum_{i=1}^{n} y_i^2 - n\bar{y}^2 \end{pmatrix} \]

where \(S\) is real, symmetric, positive definite.

4. This is a constrained optimization problem in \(n\). Solve with Lagrange multiplier

\[L(n) = n^TSn - \lambda (n^Tn - 1) \]

Take partial derivative (gradient) w.r.t. \(n\) and set to 0.

\[\nabla L = 2Sn - 2\lambda n = 0 \]

or

\[Sn = \lambda n \]

\(n = (a, b)\) is an Eigenvector of \(S\) (the one corresponding to the smallest Eigenvalue).

5. \(d\) is computed from Step 1.

Line Fitting – Finished

Announcements

• Today
 – Line wrapup
 – Shape from X
 – Stereo Vision I
Shape-from-X (i.e., Reconstruction)

- Methods for estimating 3-D shape from image data. X can be one (or more) of many cues.
 - Stereo (two or more views, known viewpoints)
 - Motion (moving camera or object)
 - Shading
 - Changing lighting (Photometric Stereo)
 - Texture variation
 - Focus/blur
 - Prior knowledge/context
 - structured light/lasers

Example: Helmholtz Stereo
Depth + Normals + BRDF

Stereo

Binocular Stereopsis: Mars
Given two images of a scene where relative locations of cameras are known, estimate depth of all common scene points.

Two images of Mars

An Application: Mobile Robot Navigation

The INRIA Mobile Robot, 1990.

Commercial Stereo Heads

Trinocular stereo

Binocular stereo
Stereo can work well

Need for correspondence

Triangulation

Stereo Vision Outline

- Offline: Calibrate cameras & determine “epipolar geometry”
- Online
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. Estimate depth

Reconstruction: General 3-D case

• Linear Method: find P such that
 \[\begin{align*}
 p \times M P &= 0 \\
 P \times M^T P &= 0
 \end{align*} \]
 \[\iff \begin{align*}
 |p_x| |M| P &= 0 \\
 |p_x| |M^T| P &= 0
 \end{align*} \]

• Non-Linear Method: find Q minimizing
 $\mathcal{E}(p, q) + \mathcal{E}(p', q')$
Two Approaches

- A) From each image, process “monocular” image to obtain cues.
- B) Establish correspondence between cues.
- C) Directly compare image regions between the two images.

Human Stereopsis: Binocular Fusion

How are the correspondences established?

Julesz (1971): Is the mechanism for binocular fusion a monocular process or a binocular one??
- There is anecdotal evidence for the latter (camouflage).

Random Dot Stereograms

A Cooperative Model (Marr and Poggio, 1976)

- Potential matches for \(p \) have to lie on the corresponding epipolar line \(l' \).
- Potential matches for \(p' \) have to lie on the corresponding epipolar line \(l \).
Epipolar Plane • Baseline
Epipoles
Epipolar Lines