Lab 3. Finite State Machine

CSE 140L
May 4, 2005
Agenda

- Lab assignment
- Design flow
- Tutorial on a simple design
- Advanced topics
Pattern Recognizer

\[X \rightarrow 11011 \rightarrow 11001 \rightarrow Z \]

\[X \quad 11101110011011 \]
\[Z \quad 00000100010001 \]

Overlaps allowed
Design Space

- Finite state machine
- Mealy and Moore machines
 - Different state diagrams
 - Mealy outputs at transitions; Moore outputs at states
- State encodings
 - 3 different encodings for each machine
- Comparison on #states, #FFs, #logic blocks, #line of codes.
Design Flow

- State Diagram
- StateCAD
- VHDL
- Xilinx ISE Floorplanner
- ModelSim

State diagram input
Interfacing
Layout of the design
The pattern recognizer for tutorial
- Recognize 110 and 101

X 01101001010
Z 000110000010
State Diagram (Mealy)

- 4 states, 9 transitions, 2 outputs at transitions
- Each node has two outgoing edges
State Diagram (Moore)

- 6 states, 13 transitions, outputs at states
State Encodings

<table>
<thead>
<tr>
<th></th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code1 (Q₁Q₀)</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Code2 (Q₁Q₀)</td>
<td>11</td>
<td>10</td>
<td>01</td>
<td>00</td>
</tr>
</tbody>
</table>
Tutorial Design

- Input Mealy state diagram in stateCAD
- Generate VHDL codes
- Implement VHDL in Xilinx
 - Synthesis
 - Mapping
 - Place and route
 - Layout checking
- Simulate in ModelSim
Modify the VHDL program with state assignments.

ARCHITECTURE BEHAVIOR OF MEALY IS

 TYPE type_sreg IS (s0, s1, s2, s3);

 ATTRIBUTE enum_encoding : string;
 ATTRIBUTE enum_encoding of type_sreg : type is "00 01 10 11";

 SIGNAL sreg, next_sreg : type_sreg;

BEGIN

 PROCESS (CLK, next_sreg)
 BEGIN