4.4 Shortest Paths in a Graph Revisited

shortest path from computer science department to Einstein’s house
Shortest path network.
- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length $\ell_e = \text{length of edge } e$ ($\ell_e \geq 0$).

Shortest path problem: find shortest directed path from s to t.

Cost of path s-2-3-5-t = $9 + 23 + 6 + 6 = 44$.
Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,
$$

add v to S, and set $d(v) = \pi(v)$.

![Diagram of Dijkstra's algorithm](image)

- Shortest path to some u in explored part, followed by a single edge (u, v).
Dijkstra's Algorithm

Dijkstra's algorithm.

- \(M = \{\} \)
- \(\forall v \in V \)
 - \(d(v) = \pi(v) = \infty \)
 - \(\pi(s) = 0 \)
- loop
 - LI\(_1\): \(\forall v \in M, d(v) \) is the minimal distance from \(s \) to \(v \) and uses edges only in \(M \)
 - exit when \(V=M \)
 - Choose \(v \) from \(V-M \) with minimal \(\pi(v) \)
 - Add \(v \) to \(M \)
 - \(d(v) = \pi(v) \)
- end loop
- Postcondition: \(\forall v \in V, d(v) \) is the minimal distance from \(s \) to \(v \)
Dijkstra’s Algorithm—Proof of Correctness

Loop invariant initialization

Given:
M = {}
forall v ∈ V
 d(v) = π(v) = ∞
π(s) = 0

Show:
LI1: forall v ∈ M, d(v) is the minimal distance from s to v
 Since M is empty, LI1 is trivially true
Dijkstra's Algorithm—Proof of Correctness

Loop invariant maintenance

Given:

LI₁': forall v ∈ M', d'(v) is the minimal distance from s to v
NOT Exit condition: V≠M
code

Show:

LI₁'': forall v ∈ M'', d''(v) is the minimal distance from s to v
Dijkstra's Algorithm—Proof of Correctness

Loop invariant maintenance
Given:
\(\text{LI}_1', V \neq M, \text{LI}_2', \text{code} \)
Show:
\(\text{LI}_1'': \forall v \in M'', d''(v) \) is the minimal distance from \(s \) to \(v \) and uses edges only between vertices in \(M \)

\(M'' \) is \(M' \) plus one new node, \(v \). The values of \(d \) for elements of \(M' \) are unchanged.
Choose \(v \) from \(V-M \) with minimal \(\pi(v) \)
Add \(v \) to \(M \)
\(d(v) = \pi(v) \)

For that one new node in \(M'' \), \(v \), \(d(v) \) is set to \(\pi(v) \), which is the minimal distance from \(s \) to \(v \), using nodes only in \(M' \) plus one extra edge. Any other path to \(v \) would need to go through some other node in \(V-M \), \(y \), which would have higher \(\pi \). Since edge lengths are non-negative \(l(s-y-v) \geq l(s-y) \geq l(s-v) \). Therefore, \(\pi(v) \) is the minimal distance from \(s \) to \(v \).
The code sets \(d(v) \) to that minimal distance. In addition, \(d(u) \) uses edges only between vertices in \(M'' \) and \(v \) is in \(M'' \).
Dijkstra’s Algorithm—Proof of Correctness

Loop termination

Given:

loop
 exit when \(V = M \)
 Choose \(v \) from \(V - M \) with minimal \(\pi(v) \)
 Add \(v \) to \(M \)
 \(d(v) = \pi(v) \)
end loop

Show:

exit condition \((M=V)\) is eventually satisfied

Every time through the loop \(|M|\) increases by one
Dijkstra’s Algorithm—Proof of Correctness

Postcondition correctness

Given:

LI₁: forall v ∈ M, d(v) is the minimal distance from s to v
Exit condition: V=M

Show:

Postcondition: forall v ∈ V, d(v) is the minimal distance from s to v

Since the exit condition shows that V=M, we can rewrite replace M with V in LI₁, yielding the postcondition
Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain $\pi(v) = \min_{e=(u,v): u \in S} d(u) + \ell_e$.

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge $e = (v, w)$, update
 $$\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$$

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

<table>
<thead>
<tr>
<th>PQ Operation</th>
<th>Dijkstra</th>
<th>Binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>ExtractMin</td>
<td>n</td>
<td>$\log n$</td>
</tr>
<tr>
<td>ChangeKey</td>
<td>m</td>
<td>$\log n$</td>
</tr>
<tr>
<td>IsEmpty</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$m \log n$</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm—Runtime analysis

Executes the for-loop n times
Each time through the loop, must:
- remove from set—$O(1)$
- find minimum $\pi(v)$
- update $\pi(v)$ for all edges adjoining v.

If we keep $\pi(v)$ in a priority queue, we can do the following
- Before loop Insert all vertices in priority queue—$O(n \log n)$
- During loop (executed n times)
 - Check Priority Queue IsEmpty—$O(1) \times n = O(n)$
 - ExtractMinimum $\pi(v)$—$O(\log n) \times n = O(n \log n)$
 - For each edge adjoining v, ChangeKey—$O(\log n)$

 How many times do we execute?
 - We will use each directed edge only once in the algorithm
 - $O(m \log n)$ (total, not per loop execution)

$T(n) = \max(O(n \log n), O(n), O(n \log n), O(m \log n)) = O(m \log n)$
Given minimal distances, how to find minimal path?

Work backwards

Find adjacent vertex such that \(d(u) + l(u, v) = d(v) \)

\[
\begin{align*}
d(t) &= 44 = d(4) + 6 \\
d(4) &= 38 = d(3) + 6 \\
d(3) &= 32 = d(2) + 23 \\
d(2) &= 9 = d(s) + 9
\end{align*}
\]

done!

For each vertex, find adjoining edges

\(T(n, m) = O(n + m) = O(m) \)
Steps for presenting an algorithm

Provide algorithm pseudo-code

Prove correctness

- Loop invariant
 - Initialization
 - Follows from precondition and pre-loop code
 - Maintenance
 - Follows from loop invariant and loop code and not(exit condition)
 - Loop Termination
 - Define some measure of progress
 - Verify progress made in loop

- Postcondition correctness
 - Follows from Loop invariant, exit condition, and post-loop code

Runtime Analysis

- Provide $T(n) = O(\ldots)$
- Make bound as tight as possible