6. Dynamic Programming

Those who cannot remember the past are condemned to repeat it
-Santayana
Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
6.6 Sequence Alignment
String Similarity

How similar are two strings?

- occurrance
- occurrence

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
Applications.
- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty δ; mismatch penalty α_{pq}.
- Cost = sum of gap and mismatch penalties.

$$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA}$$

$$2\delta + \alpha_{CA}$$
Sequence Alignment

Goal: Given two strings $X = x_1 \ x_2 \ldots \ x_m$ and $Y = y_1 \ y_2 \ldots \ y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and x_i'-y_j' cross if $i < i'$, but $j > j'$.

$$\text{cost}(M) = \sum_{(x_i, y_j) \in M} \alpha_{x_i, y_j} + \sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta$$

Ex: CTACCG vs. TACATG.

Sol: $M = x_2$-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6.
Sequence Alignment: Problem Structure

Def. \(\text{OPT}(i, j) = \min \text{ cost of aligning strings } x_1 x_2 \ldots x_i \text{ and } y_1 y_2 \ldots y_j. \)

- **Case 1:** \(\text{OPT} \) matches \(x_i \)-\(y_j \).
 - pay mismatch for \(x_i \)-\(y_j \) + min cost of aligning two strings \(x_1 x_2 \ldots x_{i-1} \) and \(y_1 y_2 \ldots y_{j-1} \)

- **Case 2a:** \(\text{OPT} \) leaves \(x_i \) unmatched.
 - pay gap for \(x_i \) and min cost of aligning \(x_1 x_2 \ldots x_{i-1} \) and \(y_1 y_2 \ldots y_j \)

- **Case 2b:** \(\text{OPT} \) leaves \(y_j \) unmatched.
 - pay gap for \(y_j \) and min cost of aligning \(x_1 x_2 \ldots x_i \) and \(y_1 y_2 \ldots y_{j-1} \)

\[
\text{OPT}(i, j) = \begin{cases}
 j\delta & \text{if } i = 0 \\
 \min \begin{cases}
 \alpha_{x_i y_j} + \text{OPT}(i-1, j-1) \\
 \delta + \text{OPT}(i-1, j) \\
 \delta + \text{OPT}(i, j-1) \\
 i\delta & \text{if } j = 0
 \end{cases}
\end{cases}
\]
Sequence Alignment: Algorithm

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, δ, α) {
 for i = 0 to m
 M[0, i] = iδ
 for j = 0 to n
 M[j, 0] = jδ
 for i = 1 to m
 for j = 1 to n
 M[i, j] = min(α[xi, yj] + M[i-1, j-1],
 δ + M[i-1, j],
 δ + M[i, j-1])
 return M[m, n]
}

Analysis. Θ(mn) time and space.

English words or sentences: m, n ≤ 10.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?
6.7 Sequence Alignment in Linear Space
Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m + n)$ space and $O(mn)$ time.
- Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg, 1975] Optimal alignment in $O(m + n)$ space and $O(mn)$ time.
- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.
Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j) = \text{OPT}(i, j)$.

Sequence Alignment: Linear Space
Claim. $f(i, j) = \text{OPT}(i, j)$.

Pf. (by induction on $i + j$)

- Base case: $f(0, 0) = \text{OPT}(0, 0) = 0$.
- Inductive step: assume $f(i', j') = \text{OPT}(i', j')$ for all $i' + j' < i + j$.
- Last edge on path to (i, j) is either from $(i-1, j-1)$, $(i-1, j)$, or $(i, j-1)$.

$$f(i, j) = \min \left\{ \alpha_{x_i, y_j} + f(i-1, j-1), \delta + f(i-1, j), \delta + f(i, j-1) \right\}$$

$$= \min \left\{ \alpha_{x_i, y_j} + \text{OPT}(i-1, j-1), \delta + \text{OPT}(i-1, j), \delta + \text{OPT}(i, j-1) \right\}$$

$$= \text{OPT}(i, j)$$
Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.
Edit distance graph.

- Let \(g(i, j) \) be shortest path from \((i, j)\) to \((m, n)\).
- Can compute by reversing the edge orientations and inverting the roles of \((0, 0)\) and \((m, n)\)
Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.
Observation 1. The cost of the shortest path that uses \((i, j)\) is \(f(i, j) + g(i, j)\).
Observation 2. Let q be an index that minimizes $f(q, n/2) + g(q, n/2)$. Then, the shortest path from $(0, 0)$ to (m, n) uses $(q, n/2)$.
Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n/2) + g(q, n/2)$ using DP.
- Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.
Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

Remark. Analysis is not tight because two sub-problems are of size $(q, n/2)$ and $(m - q, n/2)$. In next slide, we save $\log n$ factor.
Theorem. Let \(T(m, n) = \max \) running time of algorithm on strings of length \(m \) and \(n \). \(T(m, n) = O(mn) \).

Pf. (by induction on \(n \))
- \(O(mn) \) time to compute \(f(\cdot, n/2) \) and \(g(\cdot, n/2) \) and find index \(q \).
- \(T(q, n/2) + T(m - q, n/2) \) time for two recursive calls.
- Choose constant \(c \) so that:

\[
\begin{align*}
T(m, 2) & \leq cm \\
T(2, n) & \leq cn \\
T(m, n) & \leq cmn + T(q, n/2) + T(m - q, n/2)
\end{align*}
\]

- Base cases: \(m = 2 \) or \(n = 2 \).
- Inductive hypothesis: for \(m' < m \) or \(n' < n \), \(T(m', n') \leq 2cm'n' \).

\[
\begin{align*}
T(m,n) & \leq T(q,n/2) + T(m - q,n/2) + cmn \\
& \leq 2cq(n/2) + 2c(m - q)n/2 + cmn \\
& = cq(n/2) + cmn - cq(n/2) + cmn \\
& = 2cmn
\end{align*}
\]