
CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribe: Jayson Smith

LECTURE 4
Planar Scenes and Homography

4.1. Points on Planes

This lecture examines the special case of planar scenes. When talking about
the 8-point algorithm in two views, we saw that there are configurations
of points lying on critical surfaces that cause the algorithm to fail. One
example is when all points lie on a plane. We need an alternative algorithm
to handle this important special case.
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The above figure (from an early draft of MaSKS) is a special case of the
two-view configuration of points on a plane:

X2 = RX1 + T

In this case, the vector normal from camera 1 is a perpendicular distance
d from the plane P :

N>X1 = n1X + n2Y + n3Z = d

or,
1

d
N>X1 = 1 ∀X1 ∈ P

4.2. Homography

Using the definition of the normal vector above, and multiplying and dividing
by d (which equals N>X1), the expression for the transformation becomes

X2 = RX1 + T
1

d
N>X1 = HX1

where

H = R +
1

d
TN>, H ∈ R3×3

H is known as the planar homography matrix. Previously, we had
only the epipolar constraint which mapped a point in one view to a line in
the other view:

x>2 Ex1 = x>2 T̂Rx1 = 0

A homography is stronger: it is a point-to-point mapping from one view to
another.
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4.3. From 3D to 2D Coordinates

Under homography, we can write the transformation of points in 3D from
camera 1 to camera 2 as:

X2 = HX1 X1, X2 ∈ R3

In the image planes, using homogeneous coordinates, we have

λ1x1 = X1, λ2x2 = X2, therefore λ2x2 = Hλ1x1

This means that x2 is equal to Hx1 up to a scale (due to universal scale
ambiguity). The consequence of this ambiguity is that T and d can’t be
individually extracted from H. We can only extract T

d
.

Note that x2 ∼ Hx1 is a direct mapping between points in the image
planes.

If it is known that some points all lie in a plane in the scene, the im-
age can be rectified directly without needing to recover and manipulate 3D
coordinates.

4.4. Induced Homography

We say the homography H is induced by coplanar points in the scene.

The pose (R,T ) is a 3D relationship, but H is a shortcut that directly relates
points in the image planes. When the homography is applied to a point p′

that does not actually lie on plane P , it will get mapped in image plane 2
as if it were “splatted” on P along the ray o1p′.

For a point p′ not on plane P , the epipolar lines are given by:

l2 ∼ x̂′2Hx1 and l1 ∼ H>l2



4 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

x′2 is the image of point p′ in image plane 2, and Hx1 is where the homog-
raphy maps x1 in image plane 2. These two points lie on l2, and their cross
product gives us the l2.

The transformation of lines under the homography H arises as follows:

l>2 x2 = 0 ∀ x2

⇒ l>2 Hx1 = 0 ∀ x1 (l>2 H must be the epipolar line through x1)

⇒ l1 = H>l2

⇒ l2 = H−>l1

Thus we have means to relate points and lines from camera 1 to camera 2:

x2 = Hx1 (contravariant)

l2 = H−>l1 (covariant)

The important point here is that we can recover the epipolar lines without
knowing the essential matrix E.

Note: There is a “Six point algorithm” (which is not its official name)
that uses 4 points on a plane to induce a homography, and two points not
on the plane to find the epipolar lines. This appears in the next lecture.

4.5. Homography Estimation

To estimate H, we start from the equation x2 ∼ Hx1 and cross both sides
with x2:

x̂2x2 ∼ x̂2Hx1

⇒ x̂2Hx1 = 0

since any vector crossed with itself goes to 0. This is the planar homography
constraint.

What would happen if we ignored the fact that these points were on a
plane and tried to estimate E?

Since x2 ∼ Hx1, then for every u ∈ R3, we know:

u× x2 = ûx2 ⊥ Hx1

⇒ (ûx2)
>Hx1 = 0 (note: û is skew-symmetric)

⇒ −x>2 ûHx1 = 0 (since homogeneous, can drop minus sign)

⇒ x>2 ûHx1 = 0

⇒ x>2 Ex1 = 0

This final equality is true for a family of matrices E = ûH ∈ R3×3 besides

the true E = T̂R. This will cause the 8-point algorithm to crash.



LECTURE 4. PLANAR SCENES AND HOMOGRAPHY 5

4.6. Purely Rotating Camera

A camera that is rotating but has no translation maps points in 3D as

X2 = RX1

This is a special case of homography:

H = R +
1

d
TN> with T = 0,

so

x̂2Hx1 = 0

becomes

x̂2Rx1 = 0

A camera rotating about its optical center captures images of a 3D scene as
if the scene were painted on a plane infinitely far away from the camera. No
depth can be perceived without a translation between the two views. Depth
cues (parallax) can only be recovered when T is nonzero. Looking at the
homography equation, the limit of H as d approaches infinity is R. Thus any
pair of images of an arbitrary scene captured by a purely rotating camera is
related by a planar homography.

A planar panorama can be constructed by capturing many overlapping
images at different rotations, picking an image to be a reference, and then
finding corresponding points between the overlapping images. The pairwise
homographies are derived from the corresponding points, forming a mosaic
that typically is shaped like a “bow-tie,” as images farther away from the
reference are warped outward to fit the homography. The figure below is
from Pollefeys and Hartley & Zisserman.
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4.7. Second Derivation of Homography Constraint

The homography constraint, element by element, in homogenous coordinates
is as follows: x2

y2

z2

 =

 H11 H12 H13

H21 H22 H23

H31 H32 H33

 x1

y1

z1

⇔ x2 = Hx1

In inhomogenous coordinates (x′2 = x2/z2 and y′2 = y2/z2),

x′2 =
H11x1 + H12y1 + H13z1

H31x1 + H32y1 + H33z1

y′2 =
H21x1 + H22y1 + H23z1

H31x1 + H32y1 + H33z1

Without loss of generality, set z1 = 1 and rearrange:

x′2(H31x1 + H32y1 + H33) = H11x1 + H12y1 + H13

y′2(H31x1 + H32y1 + H33) = H21x1 + H22y1 + H23

We want to solve for H. Even though these inhomogeneous equations
involve the coordinates nonlinearly, the coefficients of H appear linearly.

Each corresponding point xi
1

corresponds←→ xi
2 gives two equations. H has 8

degrees of freedom, so we need 8 equations = 4 correspondences to get H (up
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to a scale factor). This should match intuition in that one needs 4 corners
to describe the mapping of a square under perspective projection.

To solve, stack H into Hs ∈ R9 (i.e. H(:) in matlab). Write

x̂2Hx1 as

a>Hs = 0, where

a
.
= x1 ⊗ x̂2 ∈ R9×3

Think of this as stuffing all the necessary cross terms between the two
sets of coordinates into blocks of a matrix. This allows one to make explicit
the linear dependence of the values in H.

Note: since the rank of a ‘hatted’ matrix is 2, the third equation added
by the Kronecker product is a linear combination of one of the other two,
and is thus redundant. Also, as convenient as the Kronecker product is here,
it does not carry over to the derivation for 3D case, which we’ll need later
on in the class.

Collect the a’s for each correspondence into a “design matrix” χ,

χ
.
= [a1 a2 · · · an]> ∈ R3n× 9, then

χHs = 0

rank(χ) = 8; solve for Hs as the null vector, then reshape it into H.
The process described above is known as the 4-point algorithm or the

Direct Linear Transform (DLT). It appears as Algorithm 5.2 in MaSKS.1

The pair of images below (from Hartley & Zisserman) shows an image before
and after projective distortion correction using H obtained from the four
indicated points in the left image and their known coordinates in the scene.

H is homogeneous, specified up to a universal scale factor. In MaSKS
Section 5.3.3, they give the decomposition of H into {R, 1

d
T , N}. There

are 4 possible solutions, two of which are physically possible in the sense of
positive depth w.r.t. the two image planes.

1Here is a question to think about. Why can’t you just solve for H via a pseudoinverse
on X2 = HX1, where Xi = [x1

i , . . . ,x
n
i ]?


