Lecture 8

Scalability and
Performance Measurement

Scalability

• Recall the isoefficiency function…
• … this function tells us how quickly serial work W must grow as we increase P….
 so that the efficiency will remain constant
• We now consider scalability in greater detail
Overhead

- Let W be the work required to carry out a computation, i.e. $W = T_1$
- In general $T_p \geq W/P$, or $W \leq P T_p$
- Define $T_o = PT_p - W$ as the total overhead or the overhead function
- We call PT_p the cost, or the processor-time product
- Thus, $E_p = W / (P T_p) = W / \text{cost}$

Cost optimality

- A system is cost-optimal if cost of the parallel computation has the same asymptotic growth as fastest serial algorithm
- The cost should grow at the same rate as W, i.e. $PT_p = \Theta(W)$
- Thus, efficiency \approx?
An example

- Consider a serial algorithm running in time
 \[W = n \log n \]
- Let \(T_p = (\log n)^2 \) on \(P=n \) processors:
 cost = \(PT_p = n(\log n)^2 > W \)
- The system solving this problem is not cost optimal

Why does efficiency decrease with \(P \)?

- Recall that efficiency
 \[E_P \equiv \frac{T_1}{(PT_p)} = \frac{W}{PT_p} \]
- Plugging this into the overhead equation
 \[T_o \equiv PT_p - W \text{ we have} \]
 \[E_P \equiv \frac{1}{1 + T_o/W} \]
- If \(W \) remains fixed
 - Overhead \((PT_p) \) often increases with \(P \)
 - Efficiency must therefore decrease
A non-cost optimal example

- Summing N numbers on N processors
 - $W = N - 1$
 - $T_N = \lg(N)$
- Cost = $N \lg N$
- Efficiency $= E_P \equiv 1/(1 + T_d/W)$

\[
= 1/(1 + (\text{Cost} - W)/W)
= 1/(1 + (N \lg N - N)/N)
= 1/(1 + \lg N)
= 1/ (\lg N) << 1
\]

A cost optimal variant

- Summing N numbers on $P < N$ processors
 - $W = N - 1$
 - $T_P = (N/P) + \lg(P)$
- Cost = $N + P \lg(P)$
- If we maintain $N = \Omega(P \log P)$, then system is cost optimal
Scalability

- We say that a system is **scalable** if we can maintain a (nearly) constant running time as we increase the work with the number of processors.
- Equivalently, a system if scalable if we can maintain a constant level of parallel efficiency.
- When we think about scalability we ask: “how quickly must the computational work grow with P?”

Relationship of scalability and cost-optimality

- Recall that a cost optimal system has an efficiency of $\Theta(1)$.
- A scalable system can be made cost-optimal if we grow the problem size with N.
- For example, with summation, we can maintain cost-optimality if we grow N as $\Theta(P \lg P)$.
- The *isoefficiency function* tells us the required growth rate, and how scalable the system is.
- It vary among different systems.
Isoefficiency function

- How quickly must the workload grow, as a function of \(P \), in order to maintain a constant level of efficiency
- Consider the ODE solver
 - \(N \) = Problem size
 - \(P \) = Number of processors
 - Computational work = \(W = 3N (= T_1) \)

Isoefficiency function for the ODE solver

- Let a floating point operation take unit time
- Normalized message start time = \(\alpha \)
- Parallel running time \(T_p \)
 - Perfect parallelization of \(W \) + communication overhead \(W/P + 2\alpha \)
- Parallel efficiency \(E_p = T_1 / (PT_p) = 3N/(2\alpha P + 3N) \)
- Rewriting to obtain expression for \(N \) in terms of \(P \)
 - \(N = (2/3) \alpha P (E_p/(1 - E_p)) = O(P) \)
- So long as we can grow \(N \) with \(P \), then the system is scalable
A different problem

- A linear isoefficiency function a “nice” function in the sense that growth is reasonable
- But not all isoefficiency functions are nice
- The isoefficiency function for summation
 \[N = \frac{2E_P}{1 - E_P} \alpha P \log(P) \]
- Summation isn’t as scalable as the ODE solver
 - If we increase the number of processors from 32 to 1024 (x32), we must increase the work by a factor 160
 - We may run out of memory
- Similarly, the ODE solver is not scalable if we check convergence after every time step

How did we come up with the isoefficiency function?

- \(E_P = W / P T_P = W / (W + T_o(W,P)) \)
 \[= \frac{1}{(1 + T_o(W,P)/W)} \]
- Solving for \(W \)
 \[W = \frac{E_P}{1 - E_p} T_o(W,P) = K T_o(W,P) \]
- This is the isoefficiency function, the required growth of \(W \) as a function of \(P \)
- For summation:
 \[N = \frac{2E_p}{1 - E_p} \alpha P \log(P) \]
- In order for a system to remain cost-optimal as it is scaled up, we require that \(W = \Omega(f(P)) \), where \(f(P) \) is the isoefficiency function
Re-examining scaled speedup

- We define the speedup as
 \[\frac{W}{T_p(W,P)} \]
- The scaled speedup (linear scaling) is
 \[\frac{PW}{T_p(PW,P)} \]
- If we are scaling a problem according to the isoefficiency function \(\Theta(P \lg P) \), what is the scaled speedup?
 \[\frac{PW \lg P}{T_p(PW \lg P, P)} \]

Scaling

- Plot the efficiency for the problem of adding n numbers on p processors
 - \(t_{add} = 10 \), time to communicate = 1
 - \(p = 1, 4, 16, 64, 256 \)
- Fixed workload
 - Let \(n=256, W = 255 \)
 - Speedup = \(W / T_p(W,P) \)
- Scaled workload, base case \(n=256, p=1 \)
 - \(W = \Theta(P) \)
 - Scaled speedup = \(PW / T_p(PW,P) \)
- “Isoefficient scaled workload”
 - \(W = \Theta(P \log P) \)
 - Isoefficient scaled speedup = \(PW \lg P / T_p(PW \lg P,P) \)
Results

- Running time for adding up n numbers of p processors:
 \[\frac{n}{p} - 1 + 11 \log p \]

- Fixed workload
 - Let \(n=256 \)
 - \(W = 255 \)
 - Speedup = \(W / T_p(W,P) \)

Results

- Linear scaling
 - base case: \(n=256, p=1 \)
 - \(W = \Theta (P) \)
 - Scaled speedup \(PW / T_p(PW,P) \)

- Isoefficient scaling
 - \(W = \Theta (P \log P) \)
 - Isoefficient scaled speedup \(PW \log P / T_p(PW \log P,P) \)
Reporting and Displaying Performance

• Give the viewer sufficient information to…
 – Draw their own conclusions
 – Reproduce your results

• Tabulate and display the results fairly
 – Avoid misleading techniques
 – See the Bailey paper for examples of how not to display and report performance data

Measures of Performance

• Completion time for a given workload
• Throughput: amount of work that can be accomplished in a given
• Relative performance: given a reference architecture or implementation
Relative performance

- If $T_B = 1.5$, $T_A = 1.0$
 - “A is 1.5 times faster than B”
- **Execution time on machine B** = T_B
 Execution time on machine $A = T_A$
- But what about…
 - $T_A / T_B = 2/3$; A is 33% faster than B
- Adopt the convention of reporting a “speedup”

Challenges to measuring performance

- **Reproducibility**
 - Transient system operating conditions
 - Document systems or program configuration, as well as inputs
 - Dedicated access is often preferred
- **Measurements are imprecise**
 - “Heisenberg uncertainty principle;” measurement technique may affect performance
 - Variations in performance are inevitable; OK if we can explain and tolerate them
- **Explain anomalous behavior, but ignore anomalies that are insignificant**
Document the operating conditions

`uname -a`

```
Linux valkyrie.ucsd.edu 2.4.21-4.0.1.ELsmp #1
SMP Sat Nov 29 04:15:49 GMT 2003 i686 i686
i386 GNU/Linux
```

g++ -v

```
Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/3.2.3/specs
Configured with: ../configure --prefix=/usr
--mandir=/usr/share/man
--infodir=/usr/share/info --enable-shared
--enable-threads=posix --disable-checking
--with-system-zlib --enable-__cxa_atexit
--host=i386-redhat-linux
```

Repeatability

- “I get different timings. What should I report?”
- Repeat results 3 to 5 times until at least 2 measures agree to within the desired tolerance (5%, 10%…)
- Report the best timings or the mean
- Also report extreme values
- A scatter plot or error bar can be useful
Measuring performance

- Measurement tools
 - System clocks
 - Often platform dependent, especially library routines, e.g. MPI_Wtime()
 - Unix time command does a reasonable job for long-running programs
 - Hardware performance monitors

- Measures of time
 - Elapsed time (wallclock time)
 - CPU time = system + user time
Complications

- Timer quantization
- Overheads in the measurement technique
- Cost of measuring a full run is prohibitive
 - Ignore startup code if you plan to run for a much longer time in production
- Transient behavior
 - Repeat your measurements
 - “Warm up”
 - Ignore outliers unless their behavior is important to you
 - Average time, maximum time, minimum time?

What’s wrong with MFLOP rates?

- Different algorithms employ different numbers of floating point operations, e.g. Strassen’s matrix multiply algorithm
- Different library implementations can execute different numbers of FLOPs, e.g. log()
- Precision affects timing
- Floating point operations take different times
 - Divide is much slower than multiply or add
 - Some machines have a fused multiply-add
- MFLOP rates ignore memory access time