Optical Flow and On to Recognition

Introduction to Computer Vision
CSE 152
Lecture 17

Announcements

• Assignment 4: Due Thursday
• Assignment 5: To be posted on Thursday
• Read: Trucco & Verri, Chapter 8 on Motion
• Final Exam: Wed, 6/9/04, 11:30-2:30, WLH 2207 (here)

Virtual Cinematography: Making 'The Matrix' Sequels
George Borshukov
VFX Technology Supervisor, ESC Entertainment
Friday, June 4, 2004
1:00 p.m. to 2:30 p.m.

The presentation will cover the key technologies that had to be developed and deployed to create the synthetic human sequences in the Matrix sequels including Universal Capture - image-based facial animation, realistic human face rendering, and use of measured BRDF in film production. It will also feature a breakdown of The Superpunch shot (pictured above) from "The Matrix Revolutions" (the bullet time punch that Neo delivers to Agent Smith during the film's last face-off). This difficult, important, expensive, and challenging shot was entirely computer generated and showcased the technological developments of 3.5+ years at their best by showing a full-frame close-up of a known human actor.

Simplest Idea for video processing
Image Differences

• Given image I(u,v,t) and I(u,v, t+\delta t), compute I(u,v, t+\delta t) - I(u,v,t).

• This is partial derivative: \frac{\partial I}{\partial t}

• At object boundaries, \left| \frac{\partial I}{\partial t} \right| is large and is cue for segmentation
• Doesn’t tell which way stuff is moving

Optical Flow:
Where do pixels move to?
The Motion Field

Rigid Motion: General Case

\[\dot{p} = T + \omega \times p \]

Position and orientation of a rigid body
Rotation Matrix & Translation vector
Angular Velocity Vector: \(\omega \) (or \(\Omega \))

Motion Field Equation

\[
\begin{align*}
\dot{u} &= \frac{T_u - T_z f}{Z} - \omega_z + \omega_{uv} - \frac{\omega_u u^2}{f} \\
\dot{v} &= \frac{T_v - T_z f}{Z} + \omega_z - \omega_{uv} - \frac{\omega_v v^2}{f}
\end{align*}
\]

- \(T \): Components of 3-D linear motion
- \(\omega \): Angular velocity vector
- \((u,v)\): Image point coordinates
- \(Z \): depth
- \(f \): focal length

Pure Translation

\[
\begin{align*}
\dot{u} &= \frac{T_u - T_z f}{Z} - \omega_z + \omega_{uv} - \frac{\omega_u u^2}{f} \\
\dot{v} &= 0
\end{align*}
\]

\[\omega = 0 \]

Pure Rotation: \(T=0 \)

\[
\begin{align*}
\dot{u} &= \frac{S_u - T_z f}{Z} - \omega_z + \omega_{uv} - \frac{\omega_u u^2}{f} \\
\dot{v} &= \frac{S_v - T_z f}{Z} + \omega_z - \omega_{uv} - \frac{\omega_v v^2}{f}
\end{align*}
\]

- Independent of \(T_x, T_y, T_z \)
- Independent of \(Z \)
- Only function of \((u,v), f\) and \(\omega \)
Rotational MOTION FIELD

The “instantaneous” velocity of points in an image

PURE ROTATION

\(\omega = (0,0,1)^T \)

Motion Field Equation: Estimate Depth

\[
\begin{align*}
\dot{u} &= \frac{T_y - T_x f}{Z} - \omega_x f + \omega_y + \frac{\omega \cdot v}{f} - \frac{\omega_y^2}{f} \\
\dot{v} &= \frac{T_y - T_x f}{Z} + \omega_x f - \omega_y - \frac{\omega_x^2}{f} - \frac{\omega_x v}{f}
\end{align*}
\]

If \(T, \omega, \) and \(f \) are known or measured, then for each image point \((u,v)\), one can solve for the depth \(Z \) given measured motion \((du/dt, dv/dt)\) at \((u,v)\).

Estimating the motion field from images

1. Feature-based (Sect. 8.4.2 of Trucco & Verri)
 1. Detect Features (corners) in an image
 2. Search for the same features nearby (Feature tracking).
2. Differential techniques (Sect. 8.4.1)

Definition of optical flow

OPTICAL FLOW = apparent motion of brightness patterns

Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image

Mathematical formulation

[Note change of notation: image coordinates now \((x,y)\), not \((u,v)\)]

\(I(x,y,t) \) = brightness at image point \((x,y)\) at time \(t \)

Consider scene (or camera) to be moving, so \(x(t), y(t) \)

Brightness constancy assumption:

\[
I(x + \frac{dx}{dt}, y + \frac{dy}{dt}, t + \frac{dt}{dt}) = I(x,y,t) \quad \Rightarrow \quad \frac{dI}{dt} = 0
\]

Optical flow constraint equation:

\[
\frac{dI}{dt} - \frac{\partial I}{\partial x} \frac{dx}{dt} - \frac{\partial I}{\partial y} \frac{dy}{dt} - \frac{\partial I}{\partial t} = 0
\]

Solving for flow

Optical flow constraint equation:

\[
\frac{dI}{dt} = \frac{\partial I}{\partial x} \frac{dx}{dt} + \frac{\partial I}{\partial y} \frac{dy}{dt} + \frac{\partial I}{\partial t} = 0
\]

- We can measure \(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}, \frac{\partial I}{\partial t} \)
- We want to solve for \(\frac{dx}{dt}, \frac{dy}{dt} \)
- One equation, two unknowns
Aperture Problem and Normal Flow

 Measurements

\[I_x = \frac{\partial I}{\partial x} \]

\[I_y = \frac{\partial I}{\partial y} \]

\[I_t = \frac{\partial I}{\partial t} \]

Flow vector

\[u = \frac{dx}{dt} \]

\[v = \frac{dy}{dt} \]

Normal Flow:

\[u_x = -\frac{I_x}{\sqrt{I_x^2 + I_y^2}} \]

\[v_y = \frac{I_y}{\sqrt{I_x^2 + I_y^2}} \]

The gradient constraint:

\[I_x u + I_y v + I_t = 0 \]

\[\nabla I \cdot \vec{U} = 0 \]

Defines a line in the \((x, y)\) space

What is the correspondence of \(P\) & \(P'\)

Contour plots of image intensity in two images

Normal Flow

Illusion Works Barber Pole Illusion

Two ways to get flow

1. Think globally, and regularize over image
2. Look over window and assume constant motion in the window

Lucas-Kanade: Integrate over a Patch

Assume a single velocity for all pixels within an image patch

\[E(u, v) = \sum_{(x, y) \in \Omega} \left(I(x, y)u + I(x, y)v + I_x \right)^2 \]

\[\frac{dE(u, v)}{du} = \sum_{(x, y) \in \Omega} 2I_x (I_x u + I_y v + I_t) = 0 \]

\[\frac{dE(u, v)}{dv} = \sum_{(x, y) \in \Omega} 2I_y (I_x u + I_y v + I_t) = 0 \]

Solve with:

\[\left(\sum I_x^2 \sum I_x I_y \right) u = -\left(\sum I_y I_t \right) \]

\[\left(\sum I_x I_t \right) v \]

On the LHS: sum of the 2x2 outer product tensor of the gradient vector

\[\sum \nabla I(1) \cdot \nabla I(2) = -\nabla I \cdot H \]
Lucas-Kanade: Singularities and the Aperture Problem

Let \(M = \sum (\nabla I | \nabla I')' \) and \(b = \left[\frac{\sum I_x}{\sum I} \right] \)

- Algorithm: At each pixel compute \(U \) by solving \(MU = b \)

- \(M \) is singular if all gradient vectors point in the same direction
 - e.g., along an edge
 - of course, trivially singular if the summation is over a single pixel
 - i.e., only normal flow is available (aperture problem)

- Corners and textured areas are OK
- \(M \) is zero matrix in constant intensity region

Recognition

Given a database of objects and an image determine what, if any of the objects are present in the image.

Object Recognition: The Problem

Given: A database \(D \) of “known” objects and an image \(I \):
1. Determine which (if any) objects in \(D \) appear in \(I \)
2. Determine the pose (rotation and translation) of the object

WHAT AND WHERE!!!
Recognition Challenges

- **Within-class variability**: Different objects within the class have different shapes or different material characteristics
 - Deformable
 - Articulated
 - Compositional
- **Pose variability**:
 - 2-D Image transformation (translation, rotation, scale)
 - 3-D Pose Variability (perspective, orthographic projection)
- **Lighting**
 - Direction (multiple sources & type)
 - Color
 - Shadows
- **Occlusion** – partial
- **Clutter in background** -> false positives