Introduction

Introduction to Computer Vision
CSE 152
Lecture 1

What is Computer Vision?

- Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images
- Sockman and Shapiro: To make useful decisions about real physical objects and scenes based on sensed images
- Ballard and Brown: The construction of explicit, meaningful description of physical objects from images.
- Forsyth and Ponce: Extracting descriptions of the world from pictures or sequences of pictures

Why is this hard?

Interpretations are ambiguous
The forward problem (graphics) is well-posed
The “inverse problem” (vision) is not

What do you see?

Changing viewpoint
Moving light source
Deforming shape

What was happening

Changing viewpoint
Moving light source
Deforming shape

Some Vision Problems

- Segmentation
 - Breaking images and video into meaningful pieces
- Reconstructing the 3D world
 - from multiple views
 - from shading
 - from structural models
- Recognition
 - What are the objects in a scene?
 - What is happening in a video?
- Video
 - Understand movement and change in image sequence.
 - Tracking objects
Related Fields

- Image Processing
- Computer Graphics
- Pattern Recognition
- Perception
- Robotics
- AI

Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who’s doing what)
 - Hollywood special effects
 - face recognition
- Various deep and attractive scientific mysteries
 - how does object recognition work?
 - Beautiful marriage of math, biology, physics, engineering
- Greater understanding of human vision

The real reason?

The Near Future: Ubiquitous Vision

- Five years from now, digital cameras will cost 1 cent.
- Digital video will be a widely available commodity component embedded in cell phones, doorbells, PDA’s, bridges, security systems, cars, etc.
- 99.9% of digitized video won’t be seen by a person.
- That doesn’t mean that only 0.1% is important!

Applications: touching your life

- Football
- Movies
- Surveillance
- HCI – hand gestures, American Sign Language
- Face recognition & Biometrics
- Road monitoring
- Industrial inspection
- Robotic control
- Autonomous driving
- Space: planetary exploration, docking
- Medicine – pathology, surgery, diagnosis
- Microscopy
- Military
- Remote Sensing

Image Interpretation - Cues

- Variation in appearance in multiple views
 - stereo
 - motion
- Shading & highlights
- Shadows
- Contours
- Texture
- Blur
- Geometric constraints
- Prior knowledge
Shading and lighting

Shading as a result of differences in lighting is

1. A source of information
2. An annoyance

Image Formation

At image location \((x,y)\) the intensity of a pixel \(I(x,y)\) is

\[I(x,y) = a(x,y) \cdot n(x,y) \cdot s \]

where

- \(a(x,y)\) is the albedo of the surface projecting to \((x,y)\).
- \(n(x,y)\) is the unit surface normal.
- \(s\) is the direction and strength of the light source.

Illumination Variability

“The variations between the images of the same face due to illumination and viewing direction are almost always larger than image variations due to change in face identity.”

Lighting variation

The course

- Part 1: The Physics of Imaging
- Part 2: Early Vision (Segmentation)
- Part 3: Reconstruction (Shape-from-X)
- Part 4: Recognition
Part I of Course: The Physics of Imaging

- How images are formed
 - Cameras
 - What a camera does
 - How to tell where the camera was located
 - Light
 - How to measure light
 - What light does at surfaces
 - How the brightness values we see in cameras are determined
 - Color
 - The underlying mechanisms of color
 - How to describe it and measure it

Cameras, lenses, and sensors

- Pinhole cameras
- Lenses
- Projection models
- Geometric camera parameters

Color

Part II: Early Vision in One Image

- Representing small patches of image
 - For three reasons
 - Sharp changes are important in practice --- known as "edges"
 - Representing texture by giving some statistics of the different kinds of small patch present in the texture.
 - Tigers have lots of bars, few spots
 - Leopards are the other way
 - We wish to establish correspondence between (say) points in different images, so we need to describe the neighborhood of the points

Segmentation

- Which image components “belong together”?
- Belong together ≅ lie on the same object
- Cues
 - similar color
 - similar texture
 - not separated by contour
 - form a suggestive shape when assembled

Texture Patterns

[Leung, Malik]

- Regular texture pattern, repeated texture elements
- Segment image based on texture
- Surface shape from texture pattern
Boundary Detection

Finding the Corpus Callosum

(G. Hamarneh, T. McInerney, D. Terzopoulos)

Part 3: Reconstruction from Multiple Images

- Photometric Stereo
 - What we know about the world from lighting changes.
- The geometry of multiple views
- Stereopsis
 - What we know about the world from having 2 eyes
- Structure from motion
 - What we know about the world from having many eyes
 - or, more commonly, our eyes moving.

Mars Rover

Spirit

Façade (Debevec, Taylor and Malik, 1996)
Reconstruction from multiple views, constraints, rendering

Architectural modeling:
- photogrammetry;
- view-dependent texture mapping;
- model-based stereopsis.

Images with marked features

Recovered model edges reprojected through recovered camera positions into the three original images
Part 4: Recognition: Two approaches

- Detection
 - Find locations in images where class of objects occurs
- Recognition
 - Classify neighborhood of location
- Most useful for specific class of objects (e.g., faces, cars, planes)

- Segmentation:
 - Which bits of image should be grouped together?
- Recognition:
 - What labels should be attached to each image region.
- Most useful for interpreting entire scene.

Why is Face Recognition Hard?
Many faces of Madona

Face Detection: First Step

Face Recognition: 2-D and 3-D

Object Recognition: 2-D Image-based

- Some objects are 2D patterns
 - e.g. faces
- Build an explicit pattern matcher
 - discount changes in illumination by using a parametric model
 - changes in background are hard
 - changes in pose are hard

Object Recognition: 3-D Model-based

- Have a 3-D model of the object
- Have representations of classes of objects
- Parts/Whole
- Function

Object Classes: Chairs

Tracking

- Use a model to predict next position and refine using next image
- Model:
 - simple dynamic models (second order dynamics)
 - kinematic models
 - etc.
- Face tracking and eye tracking now work rather well

Tracking in IR images
Tracking

(www.brickstream.com)

A couple applications
Announcements

- HW 1 will be posted on Thursday, and due next Thursday.