This class

- Finish Intra-domain routing
 - Link-state protocols
- Inter-domain routing
 - BGP
 - Policy
 - Peering/transit economics

Link State routing

- Same goal as DV, but a different approach
- Two phases
 - Reliable flooding
 - Tell all routers what you know about your local topology
 - Path calculation (Dijkstra’s algorithm)
 - Each router computes best path over complete network
- Motivation
 - Using DV, routers only have local information, making it difficult to decide what to do when there are changes
 - With LS, faster convergence and better stability (hopefully)
 - More complex

Flooding

- Each router maintains link state database and periodically sends link state packets (LSPs) to neighbor
 - LSPs contain [router, neighbors, costs]
- Each router forwards LSPs not already in its database on all ports except where received
 - Each LSP will travel over the same link at most once in each direction
- Flooding is fast, and can be made reliable with acknowledgments

Reliable flooding

- Goal: tell everyone what you know about local topology
- Periodically send link state packets (LSPs) on all links
 - LSP contains [node, neighbors, costs, sequence number]
- If node X receives an LSP from node Y over link Q
 - Save it in local link state database
 - Forward LSP on all links except Q
- Use explicit ACKs and retransmits to make flooding reliable
- Each LSP will travel at most once over each link
Flooding example

- LSP generated by X at T=0
- Nodes become orange as they receive it

Dijkstra’s Shortest Path Tree (SPT) algorithm

- Graph algorithm for single-source shortest path tree

\[S \leftarrow \emptyset \]
\[Q \leftarrow \text{<remaining nodes keyed by distance}> \]

While \(Q \neq \emptyset \)

\[u \leftarrow \text{extract-min}(Q) \]
\[S \leftarrow S \cup \{u\} \]

for each node \(v \) adjacent to \(u \)

"relax" the cost of \(v \)

Dijkstra Example – Step 1

Example – Step 2

Example – Step 3

Example – Step 4
Reliable flooding challenges

- When link/router fails need to remove old data…how?
 - LSPs carry sequence numbers to distinguish new from old
 - Only accept (and forward) the “newest” LSP seen from a node
 - Send a new LSP with cost infinity to signal a link down

- What happens when a router fails and restarts?
 - What sequence # should it use? Don’t want data ignored
 - Aging
 - Put a TTL in the LSP, periodically decremented by each router
 - When TTL = 0, purge the LSP and flood the LSP with TTL 0 to tell everyone else to do the same
 - If router waits for LSP to age out, can use any sequence number
 - Alternative: when receiving an “old” LSP from a node, tell the node what the current sequence # is rather than simply dropping the LSP

Link State evaluation

- Strengths
 - Loop free as long as LSDB’s are consistent
 - Can have transient routing loops
 - Messages are small (esp compared to DV)
 - Converges quickly (esp compared to DV)

- Weaknesses
 - Must flood data across entire network (scalability?)
 - Must maintain state for entire topology

Link State in practice

- OSPF (Open Shortest Path First) and IS-IS
 - Most widely used intra-domain routing protocol
 - Run by almost all ISPs and many large organizations

- Basic link state algorithm plus many features:
 - Authentication of routing messages
 - Extra hierarchy: Partition into routing areas
 - Load balancing: Multiple equal cost routes

But the Internet is not just one network...

- Inter-domain versus intra-domain routing

 You at work
 - Large corporation
 - Peering point
 - Backbone service provider
 - Consumer ISP

 You at home
 - Small corporation
 - Consumer ISP
Historic context

- Original ARPAnet had a single routing protocol
 - Dynamic DV scheme, replaced with static metric LS algorithm
- New networks came on the scene
 - NSFnet, CSnet, DDN, etc...
 - The total number of nodes was growing exponentially
 - With their own routing protocols (RIP, Hello, ISIS)
 - And their own rules (e.g. NSF AUP)
- Scalability: Routing tables with millions of entries?
- Heterogeneity: Network A uses hop count as a metric, Network B uses measured delay, Network C uses link capacity; what if networks use different routing protocols?
- Policy: Network A connects to Networks B and C. Network B is only allowed to carry network C’s traffic?

Solution: Inter-domain routing

- Separate routing inside a domain from routing between domains
 - Inside a domain use traditional interior gateway protocols (RIP, OSPF, etc)
 - Between domains use Exterior Gateway Protocols (EGPs)
 - Only exchange reachability information (no metrics)
 - Decide what to do based on local policy
- Terminology: Autonomous Systems (ASs)
 - Unit of abstraction in inter-domain routing; another word for domain
 - Roughly, a network with common administrative control, a coherent internal routing policy, and presenting a consistent external view of connectivity
 - Represented by a 16-bit number
 - Example: UVnet (701), Sprint (1239), UCSD (7377)

Inter-Domain Routing

- Network comprised of many Autonomous Systems (ASes) or domains
- To scale, use hierarchy: separate inter-domain and intra-domain routing
- Also called interior vs exterior gateway protocols (IGP/EGP)
 - IGP = RIP, OSPF
 - EGP = EGP, BGP

Exterior Gateway Protocol

- First major inter-domain routing protocol
- Spanning tree: no loops

Problems with EGP

- In 1995 NSFnet got out of the backbone business
 - Many backbones (MCI, Sprint, AT&T…)
 - Multi-connected regional networks
 - Meshed topology, loops...
- A tree-based structure didn’t work anymore
- Need a new protocol...
What kind of protocol?
- Link state?
 - Too much state
 - Currently 11,000 ASs and > 100,000 networks
 - Relies on global metric & policy
- Distance vector?
 - May not converge; loops
 - Relies on global metric and policy

Solution: path vector
- Reachability protocol, no metrics
- Route selection based on local policy
- Route advertisements carry list of ASs
 - “I can reach UCSD through this path: AS73, AS703, AS1”
- Automatic loop detection. Why? How?

Path Vectors
- Similar to distance vector, except send entire paths
 - e.g. AS 321 gets route [7,12,44] from AS 7 (similar DV route to 44 with cost 2)
 - stronger avoidance of loops
 - supports policies (later)

- Modulo policy, shorter paths are chosen in preference to longer ones
- Reachability only – no metrics

Policies
- Choice of routes may depend on owner, cost, AUP (acceptable use policy), …
 - Business considerations (more on this later)
 - Local policy dictates what route will be chosen and what routes will be advertised!
 - e.g., X doesn’t provide transit for B, or A prefers not to use X

How BGP operates (roughly)
- Establish session on TCP port 179
- Exchange all active routes
- Exchange incremental updates

While connection is ALIVE exchange route UPDATE messages

Two types of BGP neighbor relationships
- External Neighbor (eBGP) in a different Autonomous Systems
- Internal Neighbor (iBGP) in the same Autonomous System

Why do we need iBGP?

iBGP keeps eBGP consistent
- iBGP is needed to avoid routing loops within an AS
- Need all routers to agree on routing policy for external routes
- Existing IGP’s (like OSPF) can’t handle scale of all Internet routes

IBGP neighbors do not announce routes received via iBGP to other IBGP neighbors.
Important BGP attributes

- **Local pref**: Statically configured ranking of routes within AS
- **AS path**: ASs the announcement traversed
- **Origin**: Route came from IGP or EGP
- **Multi Exit Discriminator**: preference for where to exit
- **Community**: opaque data used for inter-ISP policy
- **Next-hop**: where the route was heard from

BGP Decision process

- Default decision for route selection
 - Highest local pref, shortest AS path, lowest MED, prefer eBGP over iBGP, lowest IGP cost, router id
- Many policies built on default decision process, but...
 - Possible to create arbitrary policies
 - Any criteria: BGP attributes, source address, port # is prime, ...
 - Can have separate policy for inbound routes, installed routes and outbound routes
 - Limited only by power of vendor-specific routing language

Example: local pref

Higher Local preference values are more preferred

Example: AS Path

Shorter AS paths are more preferred

Shortest AS path doesn't mean best path

Mr. BGP says that path 4 1 is better than path 3 2 1

Example: Using IGP cost for Hot potato routing

This router has two BGP routes to 192.44.78.0/24. Hot potato: get traffic off of your network as soon as possible. Go for egress 1!
Routing policy

- So far we’ve discussed mechanism…
- How and why are basic routing policies decided?

Ongoing Problems w/BGP

- Instability
 - Route flapping
 - Long AS-path decision criteria defaults to DV-like behavior (bouncing)
 - Not guaranteed to converge, NP-hard to tell if it does
- Scalability still a problem
 - ~100,000 network prefixes in default-free table today
 - Tension: Want to manage traffic to very specific networks (eg. multihomed content providers) but also want to aggregate information.
- Performance
 - Non-optimal, doesn’t balance load across paths
- Security…

History

- First policies for political reasons
 - NSFnet AUP (even today Internet2)
- Emergence of commercial policies
 - 1994-1995 NSFnet transition
 - NSF ceases to run Internet backbone
 - Commercial carrier (MCI, Sprint, ANS) start selling IP backbone service
 - Interconnected with each other and regional networks at several public NAPs
 - Everyone talks to everyone
 - Then five years went by…

Background – Settlement

- The telephone world
 - LECs (local exchange carriers)
 - IXCs (inter-exchange carriers)
- LECs MUST provide IXCs access to customers; regulation
- When a call goes from one phone company to another:
 - Call billed to the caller
 - The money is split up among the phone systems – this is called “settlement”
- Settled accounts received
 - The phone companies accounted for the local and interregional calls
 - Interregional rates:
 - The ones that are not settled

On the Internet…

- No regulation
 - One ISP doesn’t have to talk to another
 - Founded on “shared goodwill”
 - Pay for connectivity, not per packet
 - Not clear who should pay anyway
 - No standard settlement
Peering vs Transit

- **Peering**
 - Two ISPs provide connectivity to each other’s customers (traditionally for free)
 - Non-transitive relationship
- **Transit**
 - One ISP provides connectivity to every place it knows about (usually for money)

Example: peering

By EastNet purchasing transit, EastNet is announced by USNet to USNet peering and transit interconnections alike.

Example: transit

By EastNet purchasing transit, EastNet is announced by USNet to USNet peering and transit interconnections alike.

Example: transit (2)

Thousands of other Int’l ISPs

The value of transit

- Not just paying for the fiber, but the connectivity
 - Remember, there is no single “backbone”
 - If you’re an ISP, how do your customers get to yahoo.com?
- Means big ISPs have more value to offer small ISPs than vice-versa

Aside...

- Peering and transit are really two popular points on a continuum
- Some places sell “partial transit”
- Other places sell “usage-based” peering
- Principle issue is:
 - Which routes do you give away and which do you sell? To whom? Under what conditions?
Summary

- Link-state intra-domain routing
 - Tell everyone about your neighbors
 - Low message overhead, good convergence
 - Must maintain lots of state

- Interdomain-routing
 - Exchange reachability information (plus hints)
 - Local policy to decide which path to follow

- Traffic exchange policies are a big issue $$$
 - Complicated by lack of compelling economic model (who creates value?)
 - Can have significant impact on performance

For next time...

- Mobile and Multicast routing…
- Chapter 4.2.5 and 4.4