Administrativa

- Midterms returned
 - Mean: 53, std dev = 7
 - FYI: HW1 (mean: 51, std = 8) HW2 (mean: 35, std = 5)

- Project #2 assignment up late this afternoon
 - Implement client functionality of Gnutella (v0.4 protocol)
 - Able to connect to Gnutella network; send queries and receive responses
 - Transfer content via HTTP
 - Don’t need to implement flooding etc…
Lecture Overview

- How much can caching help performance?

- Web caching
 - HTTP lecture briefly covered cache functionality
 - In this lecture, we go into detail
 » Why do it
 » Where to do it
 » How it performs

- P2P caching
 - How do P2P use distributions differ?
 - How does this impact caching in P2P systems?
Why Web Caching?

- **Cost**
 - Original motivation for adopting caches (esp. internationally)
 - Caching saves bandwidth (bandwidth is expensive)
 - 50% byte hit rate cuts bandwidth costs in half

- **Performance**
 - User: Reduces latency
 » RTT to cache lower than to server
 - Server: Reduces load
 » Caches filter requests to server
 - Network: Reduces load
 » Requests that hit in the cache do not travel all the way to server
Caching in the Web

- Performance is a major concern in the Web
- Proxy caching is one of the most common methods used to improve Web performance
 - Duplicate requests to the same document served from cache
 - Hits reduce latency, b/w, network utilization, server load
 - Misses increase latency (extra hops)
Where to Cache?

- Answer: Everwhere
- Browser (user)
 - Small: 1MB memory, 7MB disk (Netscape)
 » Note recursive caching (memory vs. disk)!
 - 20% hit rate
- Organization (client-side proxy)
 - Large: Gigabytes (with disk)
 - 50% hit rate (for large client populations)
- In front of server (server-side accelerator)
 - Large (gigabytes)
- Server itself (in memory)
Proxy Cache Implementations

- Squid proxy cache most popular free cache
 - Research project
- Apache web server can be configured as cache
- Many cache products
 - NetworkAppliance, Inktomi, Infolibria, etc.

- At this point
 - Web caches are frequently used
 - Issues well understood
- Let’s see how and why they work
 - Remember, it’s all about performance
Cache Performance

- Ideally, we want ~100% cache hit rate
 - In practice, we get around 50%
- Cache effectiveness is determined by the workload
- **Sharing** is the most important aspect of the workload
 - Requests hit in cache because object previously requested
 - Requests to popular objects hit in cache (only first is miss)
- Sharing obeys Zipf’s law
 - # requests n to an object is inversely proportional to its rank r
 - $n = r^{-a}$, where a is a constant close to 1
Object Popularity

![Graph showing object popularity](image)

- The x-axis represents the object number (log scale).
- The y-axis shows the number of accesses (log scale).
- The graph illustrates a decreasing trend, with a few objects having a disproportionately high number of accesses.
Implications

- The implications of the object popularity distribution are interesting
- Cache hit rate grows logarithmically with
 - Cache size
 - Number of users
 - Time
- Easy to get most of the benefit of caching
 - Beginning of the distribution
- Hard to get all
 - Tail of the distribution
Number of Users

![Graph showing Hit Rate (%) vs Population for different caching scenarios: Ideal (UW) and Cacheable (UW).]
Cache Misses

- There are a number of reasons why requests miss
- Compulsory (50%)
 - Object uncacheable (20%)
 - First access to an object (30%)
- Capacity (<5%)
 - Finite resources (objects evicted, then referenced again)
- Consistency (10%)
 - Objects change (“.../today”) or die (deleted)
Uncacheable Objects

- Caches cannot handle all types of objects
 - Pages constructed from server-side programs
 - “My Yahoo”, E-commerce
 - Changing data
 - Stock quotes, sports scores, page counters
 - Queries
 - Web searches
 - Marked uncacheable
 - Server wants to see requests (e.g., hit counting)

- Challenges
 - Difficult to solve, not one culprit
Effect of Uncacheability
Uncacheability

Reasons for Uncacheability

- Overall Uncache (v1): 40.0%
- Overall Uncache (v2): 39.4%
- Response Status: 22.8%
- Query: 13.9%
- Pragma: 7.7%
- CGI: 6.2%
- Cache Control: 5.7%
- Cookie: 4.4%
- Method: 1.4%
- Auth: 1.0%
- Vary: 0.3%
- Push Content: 0.0%
- Single Reason: 23.5%
- Two Or More Reasons: 16.4%

% of All Requests
Caching More

- Approaches to caching more types of web content
 - Caching active data: Data sources may be dynamic, but not continuously (e.g., sports scores (Olympic web sites))
 » Snapshots generated from databases
 » Requires cooperation of server and database
 - Cache server-side program inputs and outputs
 » Need to recognize program+inputs
 - “Active caches”: Run programs (e.g., Java) at caches to produce data
 » Can handle almost anything dynamic
 » Need data sources, though...starts to become distributed server
 - Consistency mechanisms (more later)
Prefetching

- Let’s say we make everything cacheable
- We still have a high compulsory miss rate (30+%)
 - Initial requests to objects
- What to do?
 - We can guess that objects will be requested in future
 - And request them now: prefetch
 - Fancy algorithms (markov models with conditional probs.)
 - Simple algorithms (only embedded)
 » Effective: 50% reduction in page latency
- Tradeoffs
 - Can increase cache hit rate, reduce latency
 - But, can be tough to determine what will be accessed
 - Accuracy (waste bandwidth), stale data
Cache Capacity

- Caches have finite resources
 - Eventually, something is going to have to be evicted
- Choice is made by the cache replacement algorithm
 - Cache replacement is probably the most popular single web cache research topic
- It also probably has the least impact
 - Capacity misses comprise <5% of miss rate
 - Greatest benefit you could hope for is a 5% improvement
 - Basically, want an algorithm incorporating frequency and size
- General problem
 - Fancy algorithms evaluated with small, unrealistic cache sizes
Consistency

- Consistency ensures that objects are not stale
 - Always want version on server and in caches to be the same
- Objects have lifetimes (TTL)
 - Requests to expired objects have to go back to server If-Modified-Since (304)
 - If object hasn’t changed, return from cache
 - Otherwise server sends back changed object
 - Even if not modified, still suffer extra latency and server load
- TTLs tend to be conservative
 - Shorter TTLs to reduce potential for staleness
 - Results in many requests back to server (10-20%)
Server-Driven Consistency

- Servers know when objects change
- We can have them tell caches when they change
 - Send invalidations
- Leases used to synchronize caches and server
 - Object leases: Short, per-object TTLs
 - Record cache has copy to send invalidations
 - Volume leases: Long, per-site TTLs
 - Amortize lease renewal for many objects
- Key issues
 - State to keep track of objects in proxy caches (can scale)
 - Load induced by bursts of invalidations (pace them)
Cooperative Caching

- Sharing and/or coordination of cache state among multiple Web proxy cache nodes
 - NLANR cache hierarchy most widely known
Cooperative Caching

- Idea: Increase number of users using caching system
 - Have caches “cooperate” and share content, users
 - Caches send their misses to other caches (e.g., to a parent cache in a hierarchy)
 - Can greatly increase number of users in system (and hit rate)
- Cooperative caching has also been a popular topic
 - I’ve even worked on it (part of my thesis)
- Many interesting issues: architecture, request routing, updates, scalability
- Utility depends on scale
 - Works well for small scales (depts.), but not very necessary
 - Some benefit for medium-scale (large city)
 - Large scale (national) not worth the complexity
Summary of Web Caching

- **Web caching**
 - Used every step of the way
 - Proxy caches give us about 50% hit rate
 - Many techniques for improving cache effectiveness
 - But cannot be the only answer

- What about P2P systems? Would caching work as well there?
Analysis of Content Distribution
(Sariou et al)

- Thirst for data continues to increase (more data & users)
- New types of data have emerged – audio, video
- People use new means to exchange this data

- The result – Internet is now seeing a mixture of old and new content delivery systems:
 - Conventional Web servers and Web clients
 - CDNs: Akamai, Digital Island, Speedera
 - P2Ps: Kazaa, Gnutella, Napster, Audio Galaxy

- High-level questions:
 - What is the (bandwidth) impact of these systems on the Internet?
 - What are the characteristics of the new delivery systems?
What applications use the most bandwidth?

- From University of Washington Trace
- Web = 14% of TCP; P2P = 43% of TCP
- P2P now dominates Web in bandwidth consumed!!!
Bandwidth use asymmetry...

<table>
<thead>
<tr>
<th></th>
<th>WWW</th>
<th>Kazaa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inbound</td>
<td>outbound</td>
</tr>
<tr>
<td>Bytes Xferred</td>
<td>1.51TB</td>
<td>3.02TB</td>
</tr>
<tr>
<td>Unique objects</td>
<td>72,818,997</td>
<td>3,412,647</td>
</tr>
<tr>
<td>Clients</td>
<td>39,285</td>
<td>1,231,308</td>
</tr>
<tr>
<td>Servers</td>
<td>403,087</td>
<td>1,463</td>
</tr>
</tbody>
</table>
Outbound bandwidth usage

- P2P has diurnal cycle, like the Web
- P2P peaks later at night
What kind of data is being sent?

Web = text + images
Akamai = images
Kazaa = video
Gnutella = video + audio
Object size

P2P objects are 3 orders of magnitude bigger than Web objects
Most bandwidth consuming object

<table>
<thead>
<tr>
<th>WWW (inbound)</th>
<th>Kazaa (inbound)</th>
<th>Kazaa (outbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>object size (MB)</td>
<td>object size (MB)</td>
<td>object size (MB)</td>
</tr>
<tr>
<td># requests</td>
<td># clients</td>
<td># servers</td>
</tr>
<tr>
<td>0.009</td>
<td>694.4</td>
<td>20</td>
</tr>
</tbody>
</table>
Top 5 bandwidth consuming objects

<table>
<thead>
<tr>
<th></th>
<th>WWW (inbound)</th>
<th>Kazaa (inbound)</th>
<th>Kazaa (outbound)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>object size (MB)</td>
<td># requests</td>
<td>object size (MB)</td>
</tr>
<tr>
<td>1</td>
<td>0.009</td>
<td>1.4 mil.</td>
<td>694.4</td>
</tr>
<tr>
<td>2</td>
<td>0.002</td>
<td>3 mil.</td>
<td>702.2</td>
</tr>
<tr>
<td>3</td>
<td>333</td>
<td>21</td>
<td>690.3</td>
</tr>
<tr>
<td>4</td>
<td>0.005</td>
<td>1.4 mil.</td>
<td>775.6</td>
</tr>
<tr>
<td>5</td>
<td>2.23</td>
<td>1,457</td>
<td>698.1</td>
</tr>
</tbody>
</table>

A few clients and servers exchange big, popular objects
How is bandwidth distributed?

<table>
<thead>
<tr>
<th></th>
<th>WWW</th>
<th>Kazaa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inbound</td>
<td>outbound</td>
</tr>
<tr>
<td>Bytes Xferred</td>
<td>1.51TB</td>
<td>3.02TB</td>
</tr>
<tr>
<td>Unique objects</td>
<td>72,818,997</td>
<td>3,412,647</td>
</tr>
<tr>
<td>Clients</td>
<td>39,285</td>
<td>1,231,308</td>
</tr>
<tr>
<td>Servers</td>
<td>403,087</td>
<td>1,463</td>
</tr>
</tbody>
</table>
Object Popularity

1,000 Kazaa objects (out of 111K) responsible for 50% of bytes transferred
Small number of clients account for large portion of traffic

- 200 Web+Akamai = 13% of traffic
- 200 Kazaa = 50% of traffic (20% of all incoming HTTP)
20 servers supply 80% of Web traffic

334 servers (10%) supply 80% of Kazaa traffic
The Internet is being used in a *completely* different way:
- P2P traffic is now the largest bandwidth consumer
- Peers consume significant bandwidth in both directions
- P2P objects are 1,000 times larger than Web objects
- Small number of huge objects are responsible for an enormous fraction of bytes transferred
 - 300 Kazaa objects consumed 5.6TB bandwidth!
- Few P2P peers are causing much of the traffic
- Caching isn’t going to help much here…