Analyzing algorithms, 10 pts. Assume proc(I) is an algorithm that takes \(\Theta(I) \) time and does not change \(I \). What are the orders of the running times of the following two algorithms?

Alg1(n)
1. begin;
2. \(I \leftarrow 1; \)
3. While \(I \leq n \) do:
 4. begin;
 5. proc(I)
 6. \(I++ \)
 7. end;
 8. end;

Alg2(n)
1. begin;
2. \(I \leftarrow 1; \)
3. While \(I \leq n \) do:
 4. begin;
 5. proc(I)
 6. \(I \leftarrow 2 * I \)
 7. end;
 8. end;

Order Notation, 5 pts. each Is \(4^{\log n} \in O(n^2) \)? Why or why not? (When unspecified, logs are base 2).
Is \(\log(n!) \in \Omega(n \log n) \)? Why or why not?
Is \(4^n \in O(2^n) \)? Why or why not?
Is \(n + (n - 1) + (n - 2) + \ldots + 1 \in O(n) \)? Why or why not?
Triangles (20 points) Let G be an undirected graph with nodes v_1, \ldots, v_n. The adjacency matrix representation for G is the $n \times n$ matrix M given by: $M_{i,j} = 1$ if there is an edge from v_i to v_j, and $M_{i,j} = 0$ otherwise. A triangle is a set $\{v_i, v_j, v_k\}$ of 3 distinct vertices so that there is an edge from v_i to v_j, another from v_j to v_k and a third from v_k to v_i. Give and analyze an algorithm for deciding whether a graph has a triangle in it, where the input graph is given by its adjacency matrix representation. Analyze your algorithm’s worst-case performance first in terms of just the number of nodes n of the graph, then in terms of n and the number of edges m of the graph. Your algorithm should be faster when $m << n^2$.

Binary Conversion (10 points): Consider the following algorithm to convert a decimal number to binary. More precisely, the input is a decimal representation of a number, given as an array of digits, $D[n-1], \ldots, D[0]$, representing $X = \sum_{i=0}^{n-1} D[i]10^i$. The output should be an array of bits $B[n'-1], \ldots, B[0]$ so that $X = \sum_{i=0}^{n'-1} B[i]2^i$.

The following algorithm uses a “long division by two” algorithm $LDIV$ that takes linear time ($O(n)$) to compute the decimal representation of $X\div2$, given X in decimal.

The binary conversion algorithm is: $\text{Convert}(D[0..n-1]: \text{array of digits}):$ array of bits

1. Initialize $B[0..4n]$ array of bits.
2. $I \leftarrow 0$ {a pointer to which bit we are computing}
3. While $I \leq 4n$ do:
4. begin;
5. $B[I] \leftarrow D[I]\text{mod}2$;
6. $D \leftarrow LDiv2[D]$;
7. $I++$;
8. end;
9. Return B (possibly removing initial 0’s, if you want).

Prove that this algorithm is correct, and give a time analysis in terms of the number n of digits.

Summing triples (20 points) Let $A[1, \ldots, n]$ be an array of positive integers. A summing triple in A is 3 distinct indices $1 \leq i, j, k \leq n$ so that $A[i] + A[j] = A[k]$. Give and analyze an algorithm that, given A, determines whether there is any summing triple in A. Try to be better than $O(n^3)$.

Implementation (20 points) Implement the algorithm you gave for the summing triples problem above. Try it on random arrays where each element
A[i] is chosen in the range 1...n, for n = 2^4, 2^6, 2^8, 2^{10}, 2^{12}, 2^{14}, and 2^{16}. Plot its performance on a log_2n vs. log_2 of the time scale. Then try the same experiment on random arrays where each element is chosen in the range 1...n^4. Do you see a difference? If so, can you explain it?