Decision Problems

Instance: an input, an output, and a size. (You know this already.)
Problem: a set of instances.
Decision Problem: Problem where each instance’s output is “T” or “F”.

“Given graph G and nodes x and y, what is the shortest path from x to y?" is not a decision problem.

“Given G, x, y, and k, is there a path from x to y of length ≤ k?“

Usually, given an algorithm for a decision problem, one can use it to solve the associated optimization problem.
- E.g., use binary search: “Is there a path of length ≤ 50?“, “≤ 25?“, “≤ 37?“, ...
Reductions

Given two decision problems A and B, we say that a function f from A to B is a reduction of A to B if, for every instance x in A, x is true if and only if f(x) is true.

We write $A \leq B$, and say A is reducible to B.

More about reductions

Example:
- Reducing a maximum matching problem on bipartite graph to a max flow problem.

Except for 2 trivial problems, every computable function is reducible to every other computable function.
- Let b_T be a true instance of B & b_F a false instance.
- Given instance x of problem A, f could figure out the answer, then return b_T if x is true, b_F otherwise.

Mathematicians use reductions to study uncomputable functions (like the halting problem).
Polynomial Time Reducibility

In computer science, we limit how much work a function f can do.

- Typically, f must be a polynomial-time algorithm.
- We write $A \leq_p B$, and say “A is polynomial-time reducible to B” or “A is no harder than B”.

If $A \leq_p B$, can we conclude $B \leq_p A$?

- Isn’t f^{-1} a reduction of B to A?

 (Give two reasons this doesn’t work)

IMPORTANT! To show $A \leq_p B$, we must show:

- For every instance x of A, how to construct an instance $f(x)$ of B relatively quickly (i.e., in polynomial time), and
- If $f(x)$ is true, then x is true, and
- If $f(x)$ is false, then x is false.

Typical Garey&Johnson Style Entry

Actually from www.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html

Name: 3-Dimensional Matching (3DM) [SP1] 3

Input:

- 3 disjoint sets X, Y, and Z each comprising exactly n elements;
- A set M of m triples $\{(x_i, y_i, z_i) : 1 \leq i \leq m\}$ such that x_i is in X, y_i is in Y, and z_i is in Z, i.e., M is a subset of $X \times Y \times Z$.

Question: Does M contain a matching?

- i.e. is there a subset Q of M such that $|Q|=n$ and for all distinct pairs of triples (u,v,w) and (x,y,z) in Q, $u \neq x$, $v \neq y$ and $w \neq z$.

Comments: The variant 2-dimensional matching in which 2 disjoint sets X and Y form the basis of a set of pairs, can be solved by a number of fast methods.
Some NP-complete problems
every literate computer scientist should know ...

Traveling Salesman
Subset Sum
Hamiltonian Cycle
K-Clique
3-Colorability
Satisfiability
3-Sat
...

3-SAT \leq_P 3-Colorable

Given 3-CNF formula \((x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor x_3 \lor \overline{x}_5) \land \ldots\)

Note that one of \(x_1\) and \(\overline{x}_1\) will be \(T\),
the other will be colored \(F\).
3-SAT \leq_p 3-Colorable

Given 3-CNF formula \((x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor x_3 \lor \overline{x}_5) \land \ldots\)

- If \(x_1\) is \(F\), this node must be \(U\).
- If \(x_1\) is \(T\), this can be \(F\).

This node is forced to be \(F\) unless \(x_1\) is \(T\) or \(x_3\) is \(F\). (Etc.)