Minimum Spanning Tree Problem

Given a weighted connected graph $G = (V,E)$, ...
- For each edge $(u,v) \in E$, $w(u,v)$ is its “weight”.

... find a spanning tree (V,T) ...
- T includes each node of V.
- So T has exactly $|V| - 1$ edges.

of minimum weight.
- Weight $w(T)$ of T is sum of weights of its edges.
- Minimum means no spanning tree has lower weight.

“Size” of instance of MST includes both $|V|$ and $|E|$.
Note that $|V| \leq |E| \leq |V|^2$.

Greedy approach works for MST

If we build up a spanning tree by repeatedly adding a lightest legal edge, it will be a MST.
- “Legal” means you don’t introduce any cycles.

Several ways “lightest” can be interpreted:

1. Lightest among all remaining edges.
 While building, you have a forest (a set of trees).
 This is Kruskal’s algorithm.

2. Lightest among all edges connected to what you have already.
 You keep adding to a single tree.
 This is Prim’s algorithm.

Why greedy approaches work

Thm: Given $G = (V,E)$ and $A \subseteq E$ such that there exists a MST T of $G = (V,E)$ with $A \subseteq T$.

"A is a subset of a MST"

Suppose also that $V = V1 \cup V2$ and $V1 \cap V2 = \phi$,

"V is partitioned into V1 and V2"

that no edge of A goes from $V1$ to $V2$,

"the partition respects A"

and that e is a lightest edge from $V1$ to $V2$.

Then $A \cup \{e\}$ is a subset of some MST.

Though not necessarily of T.

In other words, adding light edges to a minimum spanning forest is OK.
Why greedy approach works

Proof: (That \(A \cup \{e\} \) is a subset of some MST)

If \(e \in T \), we're done. (Recall: \(T \) was MST containing \(A \).)

Otherwise, add \(e \) to \(T \). This creates a cycle including \(e \).
(A tree on \(|V| \) nodes can only have \(|V| - 1 \) edges.)

The cycle must have another edge \(e' \) going from \(V_1 \) to \(V_2 \).

Note that weight(\(e \)) \(\leq \) weight(\(e' \)). (\(e \) was a lightest edge)

Let \(S = T \cup \{e\} - \{e'\} \). All nodes are still connected.
(If you needed \(e' \) to go from \(u \) to \(v \) in \(T \), now you can take the other way around the cycle.)

So \(S \) is a spanning tree that's not heavier than \(T \).
Thus, \(A \cup \{e\} \) is a subset of the MST \(S \).

Kruskal's algorithm

So named because Boruvka invented it in 1926

Sort edges by weight \((e_1 \leq e_2 \leq \ldots \leq e_{|E|}) \);
\(T = \emptyset \);
For \(i = 1 \) to \(|E| \)
 If (\(T \cup \{e_i\} \) is acyclic) \(T = T \cup \{e_i\} \);

Takes \(\Theta(|E| \text{ lg } |E|) \) time for sort, plus time for \(|E| \) tests and \(|V| \) "\(T \cup \{e\} \)" operations.

- If tests and unions take \(\text{ lg } |E| \) time apiece or less, total time will be \(\Theta(|E| \text{ lg } |E|) \)
- Aside: \(\Theta(|E| \text{ lg } |E|) = \Theta(|E| \text{ lg } |V|) \) (why??)
Digression: **Union-Find Problem**

For Kruskal’s algorithm, we need fast way to test if adding e_i to T creates a cycle.

At ith iteration, T is a set of trees.

(Initially, each tree contains one node).

$e_i = (u,v)$ is OK unless u and v are in the same tree.

It would suffice if we could process requests:

- **Make-Set(u)** - creates set containing u (for initialization)
- **Find-Set(u)** - returns representative element of u’s set

 If $\text{Find-Set}(u) = \text{Find-Set}(v)$, we can’t add (u,v).
- **Union(u,v)** - combine sets containing u and v.

 Choose new representative.

Algorithms for Union-Find

Approach 1: Define $A[u] = \text{representative of } u$.

- **Find-Set(u)**: return $A[u]$. Takes $O(1)$ time.
- **Union(u,v)**: Let $x = A[u]$, $y = A[v]$; change all x’s to y’s in A

 Takes $\Omega(|V|)$ time: too slow!

Approach 2: Above plus, for each set, a list of members.

- **Find-Set(u)**: return $A[u]$ Takes $O(1)$ time.
- **Union(u,v)**: for each member z of u’s list, add it to v’s list and set $A[z] = y$. What is worst case?

 Magic Bullet: move elements of smaller list to larger.

 No element will be moved more than $\lg |V|$ times.

 Example of amortized analysis: Even though Union may take $O(|V|)$ time, doing $|V|$ unions takes $O(|V| \lg |V|)$ (assuming we start from one-element sets).
Algorithms for Union-Find

- Each set is a tree; each node points to parent.
- Root has null pointer.
 - Find-Set(u): follow pointers to tree’s root.
 - Union(u, v): make u’s root point to v’s root (or vice versa)

Balancing: make smaller tree point to larger.
- Worst case $O(\lg |V|)$ per request

Path Compression: whenever you follow path to root, reassign all pointers to go directly to root.
- Amortized cost $O(\lg |V|)$ per request.

Balancing + Path Compression: Amortized inverse-Ackerman’s($|V|$) per request (“almost constant”)

Prim’s algorithm
So named because Jarnik invented it in 1930.

Grow (single) tree from start node by adding lightest edge from tree node to non-tree node.

How do we find the lightest edge quickly?

“Obvious” method:
- Keep a min-priority queue of all edges connected to tree (key is weight of edge).
- When we add node to tree, add all its edges to the queue.
- When we Extract an edge from the queue, check that only one endpoint is in tree; if so, add other node to tree.

Requires $|E|$ Insert’s and $|E|$ Extract-Min’s

Complexity is $\Theta(|E| \ lg |E|)$ (which is also $\Theta(|E| \ lg |V|)$)
Prim's algorithm

Better method to find the lightest edge quickly:

- Keep priority queue of nodes, with key being the weight of the lightest edge from the node to the tree.
 - Initialize the queue to all nodes with key ∞
- When we add node to tree, for each of its edges, do a Decrease-Key operation to other endpoint.
- Extract-Min tells node to add to tree.

$|V|$ Insert's, $|V|$ Extract-Min's, and $|E|$ Decrease-Key's.

Complexity is still $\Theta(|E| \lg |V|)$

So what?? Fibonacci Heaps take amortized $O(1)$ time for Decrease-Key and $O(\lg |V|)$ time for other operations.

So time is $O(E + |V| \lg |V|)$ - Is this better than $\Theta(|E| \lg |V|)$?

Glossary (in case symbols are weird)

- \subseteq: subset
- \in: element of
- ∞: infinity
- \emptyset: empty set
- \forall: for all
- \exists: there exists
- \cap: intersection
- \cup: union
- Θ: big theta
- Ω: big omega
- Σ: summation
- \geq: greater than or equal to
- \leq: less than or equal to
- \approx: about equal
- \neq: not equal
- \mathbb{N}: natural numbers (\mathbb{N})
- \mathbb{R}: reals (\mathbb{R})
- \mathbb{Q}: rationals (\mathbb{Q})
- \mathbb{Z}: integers (\mathbb{Z})